Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Science China Life S...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Science China Life Sciences
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

AtMYB103 is a crucial regulator of several pathways affecting Arabidopsis anther development

Authors: Jun, Zhu; GuoQiang, Zhang; YuHua, Chang; XiaoChuan, Li; Jun, Yang; XueYong, Huang; QingBo, Yu; +3 Authors

AtMYB103 is a crucial regulator of several pathways affecting Arabidopsis anther development

Abstract

Previous reports indicated that AtMYB103 has an important role in tapetum development, callose dissolution, and exine formation in A. thaliana anthers. Here, we further characterized its function in anther development by expression pattern analysis, transmission electron microscopy observation of the knockout mutant, and microarray analysis of downstream genes. A total of 818 genes differentially expressed between ms188 and the wild-type were identified by global expression profiling analysis. Functional classification showed that loss-of-function of AtMYB103 impairs cell wall modification, lipid metabolic pathways, and signal transduction throughout anther development. RNA in situ hybridization confirmed that transcription factors acting downstream of AtMYB103 (At1g06280 and At1g02040) were expressed in the tapetum and microspores at later stages, suggesting that they might have important roles in microsporogenesis. These results indicated that AtMYB103 is a crucial regulator of Arabidopsis anther development.

Related Organizations
Keywords

Arabidopsis Proteins, Gene Expression Regulation, Plant, Gene Expression Profiling, Gene Knockdown Techniques, Arabidopsis, Flowers, Microarray Analysis, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%