Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DNA Repairarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DNA Repair
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DNA Repair
Article . 2008
versions View all 2 versions

PI3K-Akt signaling regulates basal, but MAP-kinase signaling regulates radiation-induced XRCC1 expression in human tumor cells in vitro

Authors: H. Peter Rodemann; Mahmoud Toulany; Birgit Fehrenbacher; Klaus Dittmann; Martin Schaller; Michael H. Baumann;

PI3K-Akt signaling regulates basal, but MAP-kinase signaling regulates radiation-induced XRCC1 expression in human tumor cells in vitro

Abstract

As demonstrated recently, ionizing radiation (IR) can mediate phosphorylation of DNA-PKcs in human tumor cells through stimulation of the PI3K/Akt pathway. It is also known that DNA-PKcs directly interacts the X-ray repair cross-complementing group 1 protein (XRCC1) involved in base excision repair (BER). Therefore, in the present study we investigated the role of PI3K/Akt activity and DNA-PKcs on XRCC1 expression/stabilization. In contrast to the DNA-PKcs-deficient glioblastoma cell line MO59J, the DNA-PKcs-proficient counterpart MO59K as well as human lung adenocarcinoma A549 cells presented a high basal level of XRCC1 expression. Radiation doses of 3-12Gy did not stimulate a further enhanced expression of XRCC1 in DNA-PKcs-proficient cells (MO59K and A549) within 180min post-irradiation. However, a marked induction of XRCC1 expression was apparent in DNA-PKcs-deficient MO59J cells. Targeting of DNA-PKcs as well as PI3K/Akt pathway by specific kinase inhibitors and/or siRNA reduced basal XRCC1 expression in un-irradiated DNA-PKcs-proficient cells to the level observed in DNA-PKcs-deficient cells. Reduction of basal expression of XRCC1 by XRCC1-siRNA, AKT-siRNA as well as DNA-PKcs inhibitor facilitated IR-induced XRCC1 expression. XRCC1 expression induced by irradiation, however, was independent of PI3K/Akt signaling, but dependent of MAPK-ERK1/2. By immuno-precipitation experiments and confocal microscopy a complex formation of XRCC1 and DNA-PKcs was shown. Applying gamma-H2AX foci analysis it was shown that basal expression of XRCC1 is important for the repair of IR-induced DNA-double strand breaks (DNA-DSBs). These data indicate that IR-induced XRCC1 expression is dependent on the expression level of DNA-PKcs and basal activity status of PI3K/Akt signaling. Likewise, potential of IR-induced XRCC1 expression depends on its basal expression level.

Related Organizations
Keywords

Recombination, Genetic, DNA Repair, MAP Kinase Signaling System, Recombinant Fusion Proteins, DNA-Activated Protein Kinase, DNA-Binding Proteins, ErbB Receptors, Phosphatidylinositol 3-Kinases, X-ray Repair Cross Complementing Protein 1, Cell Line, Tumor, Radiation, Ionizing, Humans, DNA Breaks, Double-Stranded, Mitogen-Activated Protein Kinases, Extracellular Signal-Regulated MAP Kinases, Protein Kinase Inhibitors, Proto-Oncogene Proteins c-akt, Phosphoinositide-3 Kinase Inhibitors, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%