Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Molecular Genetics
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration

Authors: Koziell, Ania; Grech, Victor; Hussain, Sagair; Lee, Gary; Lenkkeri, Ulla; Tryggvason, Karl; Scambler, Peter;

Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration

Abstract

Mutations of the novel renal glomerular genes NPHS1 and NPHS2 encoding nephrin and podocin cause two types of severe nephrotic syndrome presenting in early life, Finnish type congenital nephrotic syndrome (CNF) and a form of autosomal recessive familial focal segmental glomerulosclerosis (SRN1), respectively. To investigate the mechanisms by which mutations might cause glomerular protein leak, we analysed NPHS1/NPHS2 genotype/phenotype relationships in 41 non-Finnish CNF patients, four patients with congenital (onset 0 to 3 months) focal segmental glomerulosclerosis and five patients with possible SRN1 (onset 6 months to 2 years). We clarify the range of NPHS1 mutations in CNF, detecting mutation 'hot-spots' within the NPHS1 coding sequence. In addition, we describe a novel discordant CNF phenotype characterized by variable clinical severity, apparently influenced by gender. Moreover, we provide evidence that CNF may be genetically heterogeneous by detection of NPHS2 mutations in some CNF patients in whom NPHS1 mutations were not found. We confirm an overlap in the NPHS1/NPHS2 mutation spectrum with the characterization of a unique di-genic inheritance of NPHS1 and NPHS2 mutations, which results in a 'tri-allelic' hit and appears to modify the phenotype from CNF to one of congenital focal segmental glomerulosclerosis (FSGS). This may result from an epistatic gene interaction, and provides a rare example of multiple allelic hits being able to modify an autosomal recessive disease phenotype in humans. Our findings provide the first evidence for a functional inter-relationship between NPHS1 and NPHS2 in human nephrotic disease, thus underscoring their critical role in the regulation of glomerular filtration.

Related Organizations
Keywords

Adult, Male, Nephrotic Syndrome, Genotype, Glomerulosclerosis, Focal Segmental, DNA Mutational Analysis, Kidney Glomerulus, Intracellular Signaling Peptides and Proteins, 610, Infant, Membrane Proteins, Proteins, Phenotype, Child, Preschool, Humans, Female, Child

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    243
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
243
Top 10%
Top 1%
Top 1%
bronze