Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The Structural Basis of DNA Target Discrimination by Papillomavirus E2 Proteins

Authors: S S, Kim; J K, Tam; A F, Wang; R S, Hegde;

The Structural Basis of DNA Target Discrimination by Papillomavirus E2 Proteins

Abstract

The papillomavirus E2 proteins regulate the transcription of all papillomavirus genes and are necessary for viral DNA replication. Disruption of the E2 gene is commonly associated with malignancy in cervical carcinoma, indicating that E2 has a role in regulating tumor progression. Although the E2 proteins from all characterized papillomaviruses bind specifically to the same 12-base pair DNA sequence, the cancer-associated human papillomavirus E2 proteins display a unique ability to detect DNA flexibility and intrinsic curvature. To understand the structural basis for this phenomenon, we have determined the crystal structures of the human papillomavirus-18 E2 DNA-binding domain and its complexes with high and low affinity binding sites. The E2 protein is a dimeric beta-barrel and the E2-DNA interaction is accompanied by a large deformation of the DNA as it conforms to the E2 surface. DNA conformation and E2-DNA contacts are similar in both high and low affinity complexes. The differences in affinity correlate with the flexibility of the DNA sequence. Preferences of E2 proteins from different papillomavirus strains for flexible or prevent DNA targets correlate with the distribution of positive charge on their DNA interaction surfaces, suggesting a role for electrostatic forces in the recognition of DNA deformability.

Related Organizations
Keywords

Models, Molecular, Binding Sites, Base Sequence, Models, Genetic, Sequence Homology, Amino Acid, Protein Conformation, Molecular Sequence Data, Stereoisomerism, DNA, Oncogene Proteins, Viral, Protein Structure, Tertiary, DNA-Binding Proteins, Kinetics, Viral Proteins, Sequence Homology, Nucleic Acid, Escherichia coli, Nucleic Acid Conformation, Amino Acid Sequence, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
gold