Powered by OpenAIRE graph
Bloodarrow_drop_down
Blood
Article . 2003 . Peer-reviewed
Data sources: Crossref
Blood
Article . 2004
versions View all 2 versions

Oxidized phospholipids in oxidized low-density lipoprotein down-regulate thrombomodulin transcription in vascular endothelial cells through a decrease in the binding of RARβ-RXRα heterodimers and Sp1 and Sp3 to their binding sequences in the TM promoter

Authors: Koji Oida; Kimihiko Takada; Hiroyuki Ishikawa; Tsuyoshi Tezuka; Hidemi Ishii; Shuichi Horie;

Oxidized phospholipids in oxidized low-density lipoprotein down-regulate thrombomodulin transcription in vascular endothelial cells through a decrease in the binding of RARβ-RXRα heterodimers and Sp1 and Sp3 to their binding sequences in the TM promoter

Abstract

AbstractThe present work investigated the mechanism for down-regulation of thrombomodulin (TM), an anticoagulant glycoprotein, on cultured umbilical vein endothelial cells (HUVECs) exposed to lipid extracts from oxidized low-density lipoprotein (ox-LDL). HUVECs exposed to phospholipid extracts, but not to free cholesterol, triglyceride, or cholesterol ester, isolated from ox-LDL reduced TM mRNA levels to nearly the same extent as native ox-LDL. Oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (ox-PAPC), but not native PAPC or a reduced form of ox-PAPC, markedly decreased TM mRNA levels. The apparent half-life (t 1/2 = 2.7 hours) of TM mRNA in control cells was not significantly different from that in cells exposed to ox-LDL or ox-PAPC. TM mRNA levels were regulated by transcriptional activation via a retinoid receptor β (RARβ). The binding activities of nuclear proteins from HUVECs treated with ox-LDL or ox-PAPC to the DR4 or stimulatory protein 1 (Sp1) sequence in the TM promoter were significantly reduced with decreased expression of RARβ, retinoid X receptor α (RXRα), Sp1, and Sp3 in the nuclei. The promoter activity in HUVECs transfected with a reporter plasmid expressing the TM promoter with targeted deletions in the DR4 and Sp1 binding elements was decreased to about 20% of that with the wild-type construct. Treatment of the cells with ox-PAPC had no additional effect on the promoter activity. These results suggest that oxidized phospholipids in ox-LDL inhibit transcription of the TM gene in HUVECs by inhibiting the binding of RARβ-RXRα heterodimer and Sp, including Sp1 and Sp3, to the DR4 element and Sp1 binding element, respectively, in the TM promoter with reduced expression of RARβ, RXRα, and Sp1 and Sp3 in the nuclei.

Keywords

Binding Sites, Transcription, Genetic, Receptors, Retinoic Acid, Sp1 Transcription Factor, Thrombomodulin, Nuclear Proteins, DNA, DNA-Binding Proteins, Lipoproteins, LDL, Retinoid X Receptors, Sp3 Transcription Factor, Gene Expression Regulation, Phosphatidylcholines, Humans, Endothelium, Vascular, RNA, Messenger, Promoter Regions, Genetic, Cells, Cultured, Half-Life, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%