Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Caveolin-1 Expression Inhibits Wnt/β-Catenin/Lef-1 Signaling by Recruiting β-Catenin to Caveolae Membrane Domains

Authors: F, Galbiati; D, Volonte; A M, Brown; D E, Weinstein; A, Ben-Ze'ev; R G, Pestell; M P, Lisanti;

Caveolin-1 Expression Inhibits Wnt/β-Catenin/Lef-1 Signaling by Recruiting β-Catenin to Caveolae Membrane Domains

Abstract

Caveolin-1 is a principal component of caveolae membranes. In NIH 3T3 cells, caveolin-1 expression is dramatically up-regulated in confluent cells and localizes at areas of cell-cell contact. However, it remains unknown whether caveolin-1 is involved in cell-cell signaling. Here, we examine the potential role of caveolin-1 in regulating beta-catenin signaling. beta-Catenin plays a dual role in the cell, linking E-cadherin to the actin cytoskeleton and in Wnt signaling by forming a complex with members of the lymphoid enhancing factor (Lef-1) family of transcription factors. We show that E-cadherin, beta-catenin, and gamma-catenin (plakoglobin) are all concentrated in caveolae membranes. Moreover, we demonstrate that activation of beta-catenin/Lef-1 signaling by Wnt-1 or by overexpression of beta-catenin itself is inhibited by caveolin-1 expression. We also show that recombinant expression of caveolin-1 in caveolin-1 negative cells is sufficient to recruit beta-catenin to caveolae membranes, thereby blocking beta-catenin-mediated transactivation. These results suggest that caveolin-1 expression can modulate Wnt/beta-catenin/Lef-1 signaling by regulating the intracellular localization of beta-catenin.

Keywords

Transcriptional Activation, Lymphoid Enhancer-Binding Factor 1, Caveolin 1, Cell Membrane, Membrane Proteins, 3T3 Cells, Wnt1 Protein, Zebrafish Proteins, Caveolins, DNA-Binding Proteins, Wnt Proteins, Cytoskeletal Proteins, Mice, Proto-Oncogene Proteins, Trans-Activators, Animals, beta Catenin, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    172
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
172
Top 10%
Top 10%
Top 10%
gold