Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Science
Article . 2013
Science
Article . 2013 . Peer-reviewed
Data sources: Crossref
Science
Article . 2013
Science
Article . 2013
Data sources: KNAW Pure
versions View all 4 versions

RNA Helicase DDX3 Is a Regulatory Subunit of Casein Kinase 1 in Wnt–β-Catenin Signaling

Authors: Cruciat, C.M.; Dolde, C.; de Groot, R.E.A.; Ohkawara, B.; Reinhard, C.; Korswagen, H.C.; Niehrs, C.;

RNA Helicase DDX3 Is a Regulatory Subunit of Casein Kinase 1 in Wnt–β-Catenin Signaling

Abstract

Three Tales of Wnt Signaling The Wnt signaling pathway has important roles in regulating many biological processes during development and is also implicated in the behavior of some cancer cells (see the Perspective by Berndt and Moon ). Cruciat et al. (p. 1436 , published online 14 February) describe the mechanism of action of a protein found in a screen for proteins that influence Wnt signaling. DDX3, a DEAD-box RNA helicase, is required for proper Wnt signaling in Xenopus and Caenorhabditis elegans . It appears to act not through its action as an RNA helicase or through adenosine triphosphate binding, but rather by interacting with the protein kinase, casein kinase 1, and promoting its activation. Huang et al. (p. 1441 , published online 31 January) investigated the function of receptor-interacting protein kinase 4 (RIPK4), the product a gene whose mutation causes severe developmental defects in mice and humans. Over-expression of the protein in cultured human cells activated transcription of genes regulated by the Wnt signaling pathway, and loss of RIPK4 function inhibited Wnt signaling in Xenopus embryos. At the molecular level, RIPK4 interacted with the Wnt co-receptor LRP6 and the Wnt signaling adaptor protein DVL2 and promoted phosphorylation of DVL2. Habib et al. (p. 1445 ) used Wnt-immobilized beads to understand how external cues direct asymmetrical stem cell divisions. Spatially restricted Wnt signals oriented the plane of mitotic division and lead to pluripotency gene expression in the Wnt-proximal daughter cell while the more distal daughter cell acquired hallmarks of differentiation. Thus, asymmetric gene expression patterns can arise as a consequence of orientation by a short-range signal.

Keywords

Casein Kinase 1 epsilon, Xenopus, Dishevelled Proteins, Xenopus Proteins, Phosphoproteins, Protein Structure, Tertiary, DEAD-box RNA Helicases, Wnt Proteins, HEK293 Cells, Animals, Humans, Phosphorylation, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Wnt Signaling Pathway, RNA Helicases, beta Catenin, Adaptor Proteins, Signal Transducing, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    190
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
190
Top 1%
Top 10%
Top 1%