Poly(A) Tail-dependent Exonuclease AtRrp41p fromArabidopsis thaliana Rescues 5.8 S rRNA Processing and mRNA Decay Defects of the Yeast ski6 Mutant and Is Found in an Exosome-sized Complex in Plant and Yeast Cells
pmid: 10930416
Poly(A) Tail-dependent Exonuclease AtRrp41p fromArabidopsis thaliana Rescues 5.8 S rRNA Processing and mRNA Decay Defects of the Yeast ski6 Mutant and Is Found in an Exosome-sized Complex in Plant and Yeast Cells
Eukaryotic 3'-->5' exonucleolytic activities are essential for a wide variety of reactions of RNA maturation and metabolism, including processing of rRNA, small nuclear RNA, and small nucleolar RNA, and mRNA decay. Two related but distinct forms of a complex containing 10 3'-->5' exonucleases, the exosome, are found in yeast nucleus and cytoplasm, respectively, and related complexes exist in human cells. Here we report on the characterization of the AtRrp41p, an Arabidopsis thaliana homolog of the Saccharomyces cerevisiae exosome subunit Rrp41p (Ski6p). Purified recombinant AtRrp41p displays a processive phosphorolytic exonuclease activity and requires a single-stranded poly(A) tail on a substrate RNA as a "loading pad." The expression of the Arabidopsis RRP41 cDNA in yeast rescues the 5.8 S rRNA processing and 3'-->5' mRNA degradation defects of the yeast ski6-100 mutant. However, neither of these defects can explain the conditional lethal phenotype of the ski6-100 strain. Importantly, AtRrp41p shares additional function(s) with the yeast Rrp41p which are essential for cell viability because it also rescues the rrp41 (ski6) null mutant. AtRrp41p is found predominantly in a high molecular mass complex in Arabidopsis and in yeast cells, and it interacts in vitro with the yeast Rrp44p and Rrp4p exosome subunits, suggesting that it can participate in evolutionarily conserved interactions that could be essential for the integrity of the exosome complex.
- State University of New York at Potsdam United States
- University at Albany, State University of New York United States
Saccharomyces cerevisiae Proteins, Exosome Multienzyme Ribonuclease Complex, Arabidopsis Proteins, Genetic Complementation Test, Arabidopsis, RNA-Binding Proteins, Saccharomyces cerevisiae, Polymerase Chain Reaction, Recombinant Proteins, RNA, Ribosomal, 5.8S, Open Reading Frames, Protein Subunits, Phenotype, Exoribonucleases, Humans, RNA, Messenger, RNA Processing, Post-Transcriptional, Gene Library
Saccharomyces cerevisiae Proteins, Exosome Multienzyme Ribonuclease Complex, Arabidopsis Proteins, Genetic Complementation Test, Arabidopsis, RNA-Binding Proteins, Saccharomyces cerevisiae, Polymerase Chain Reaction, Recombinant Proteins, RNA, Ribosomal, 5.8S, Open Reading Frames, Protein Subunits, Phenotype, Exoribonucleases, Humans, RNA, Messenger, RNA Processing, Post-Transcriptional, Gene Library
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).127 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
