Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2003
versions View all 2 versions

Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning

Authors: Khokha, M K; Hsu, D; Brunet, L J; Dionne, M S; Harland, R M;

Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning

Abstract

During limb outgrowth, signaling by bone morphogenetic proteins (BMPs) must be moderated to maintain the signaling loop between the zone of polarizing activity (ZPA) and the apical ectodermal ridge (AER). Gremlin, an extracellular Bmp antagonist, has been proposed to fulfill this function and therefore be important in limb patterning. We tested this model directly by mutating the mouse gene encoding gremlin (Cktsf1b1, herein called gremlin). In the mutant limb, the feedback loop between the ZPA and the AER is interrupted, resulting in abnormal skeletal pattern. We also show that the gremlin mutation is allelic to the limb deformity mutation (ld). Although Bmps and their antagonists have multiple roles in limb development, these experiments show that gremlin is the principal BMP antagonist required for early limb outgrowth and patterning.

Keywords

Embryonic Induction, Fetal Proteins, Male, 570, Limb Buds, 590, Fibroblast Growth Factor 4, Formins, Gene Expression Regulation, Developmental, Loss of Heterozygosity, Bone and Bones, Hindlimb, Fibroblast Growth Factors, Mice, Bone Morphogenetic Proteins, Forelimb, Animals, Cytokines, Intercellular Signaling Peptides and Proteins, Female, Hedgehog Proteins, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    340
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
340
Top 1%
Top 1%
Top 1%