Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Virus Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Virus Research
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Virus Research
Article . 2008
versions View all 2 versions

The NS5A protein of hepatitis C virus represses gene expression of hRPB10α, a common subunit of host RNA polymerases, through interferon regulatory factor-1 binding site

Authors: Cho-Rok, Jung; Seeyoung, Choi; Dong-Soo, Im;

The NS5A protein of hepatitis C virus represses gene expression of hRPB10α, a common subunit of host RNA polymerases, through interferon regulatory factor-1 binding site

Abstract

The nonstructural (NS) 5A protein of hepatitis C virus (HCV) plays important roles in both viral RNA replication and modulation of the physiology of the host cell. Here we report that NS5A repressed gene expression of hRPB10alpha, a common subunit of host RNA polymerases (Pol), in hepatoma cell lines and Huh-7 cells harboring HCV replicon. Analysis of the hRPB10alpha promoter region revealed that interferon regulatory factor-1 binding element (IRF-E) was essential for its transcription. The IRF-E was responsible for the NS5A-mediated repression of the hRPB10alpha transcription and its induction by IRF-1 that is known to be induced by interferon-alpha. Electrophoretic mobility shift assay showed that IRF-1 bound to the IRF-E and the binding reduced when NS5A was expressed. NS5A appeared to negatively regulate IRF-1 expression, which might be partly responsible for the decrease of hRPB10alpha expression. NS5A expression moderately decreased promoter-independent Pol activity in vitro. Transcription of adenoviral genes that are dependent on Pol II or III and propagation of adenoviral genome were impaired in HeLa cells with stable NS5A expression. The results suggest that NS5A may partly modulate host cell transcription by the down-regulation of hRPB10alpha.

Related Organizations
Keywords

Binding Sites, Transcription, Genetic, Interferon-alpha, DNA-Directed RNA Polymerases, Hepacivirus, Viral Nonstructural Proteins, Adenoviridae, Cell Line, Gene Expression Regulation, Humans, Interferon Regulatory Factor-1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average