<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The 22q11 deletion syndrome candidate gene Tbx1 determines thyroid size and positioning

doi: 10.1093/hmg/ddl455
pmid: 17164259
The 22q11 deletion syndrome candidate gene Tbx1 determines thyroid size and positioning
Thyroid dysgenesis is the major cause of congenital hypothyroidism in humans. The underlying molecular mechanism is in most cases unknown, but the frequent co-incidence of cardiac anomalies suggests that the thyroid morphogenetic process may depend on proper cardiovascular development. The T-box transcription factor TBX1, which is the most probable gene for the 22q11 deletion syndrome (22q11DS/DiGeorge syndrome/velo-cardio-facial syndrome), has emerged as a central player in the coordinated formation of organs and tissues derived from the pharyngeal apparatus and the adjacent secondary heart field from which the cardiac outflow tract derives. Here, we show that Tbx1 impacts greatly on the developing thyroid gland, although it cannot be detected in the thyroid primordium at any embryonic stage. Specifically, in Tbx1-/- mice, the downward translocation of Titf1/Nkx2.1-expressing thyroid progenitor cells is much delayed. In late mutant embryos, the thyroid fails to form symmetric lobes but persists as a single mass approximately one-fourth of the normal size. The hypoplastic gland mostly attains a unilateral position resembling thyroid hemiagenesis. The data further suggest that failure of the thyroid primordium to re-establish contact with the aortic sac is a key abnormality preventing normal growth of the midline anlage along the third pharyngeal arch arteries. In normal development, this interaction may be facilitated by Tbx1-expressing mesenchyme filling the gap between the pharyngeal endoderm and the detached thyroid primordium. The findings indicate that Tbx1 regulates intermediate steps of thyroid development by a non-cell-autonomous mechanism. Thyroid dysgenesis related to Tbx1 inactivation may explain an overrepresentation of hypothyroidism occurring in patients with the 22q11DS.
- Sahlgrenska University Hospital Sweden
- Albert Einstein College of Medicine United States
- Yeshiva University United States
- University of Gothenburg Sweden
Mice, Knockout, Thyroid Gland, Organ Size, Choristoma, Models, Biological, Mesoderm, Mice, Inbred C57BL, Mice, Thyroid Dysgenesis, DiGeorge Syndrome, Animals, Computer Simulation, T-Box Domain Proteins
Mice, Knockout, Thyroid Gland, Organ Size, Choristoma, Models, Biological, Mesoderm, Mice, Inbred C57BL, Mice, Thyroid Dysgenesis, DiGeorge Syndrome, Animals, Computer Simulation, T-Box Domain Proteins
20 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).64 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%