Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Mutations in Arabidopsis Fatty Acid Amide Hydrolase Reveal That Catalytic Activity Influences Growth but Not Sensitivity to Abscisic Acid or Pathogens

Authors: Kim, Sang-Chul; Kang, Li; Nagaraj, Satish; Blancaflor, Elison B.; Mysore, Kirankumar S.; Chapman, Kent D.;

Mutations in Arabidopsis Fatty Acid Amide Hydrolase Reveal That Catalytic Activity Influences Growth but Not Sensitivity to Abscisic Acid or Pathogens

Abstract

Fatty acid amide hydrolase (FAAH) terminates the endocannabinoid signaling pathway that regulates numerous neurobehavioral processes in animals by hydrolyzing N-acylethanolamines (NAEs). Recently, an Arabidopsis FAAH homologue (AtFAAH) was identified, and several studies, especially those using AtFAAH overexpressing and knock-out lines, have suggested an in vivo role for FAAH in the catabolism of NAEs in plants. We previously reported that overexpression of AtFAAH in Arabidopsis resulted in accelerated seedling growth, and in seedlings that were insensitive to exogenous NAEs but hypersensitive to abscisic acid (ABA) and hypersusceptible to nonhost pathogens. Here we show that whereas the enhanced growth and NAE tolerance of the AtFAAH overexpressing seedlings depend on the catalytic activity of AtFAAH, hypersensitivity to ABA and hypersusceptibility to nonhost pathogens are independent of its enzymatic activity. Five amino acids known to be critical for rat FAAH activity are also conserved in AtFAAH (Lys-205, Ser-281, Ser-282, Ser-305, and Arg-307). Site-directed mutation of each of these conserved residues in AtFAAH abolished its hydrolytic activity when expressed in Escherichia coli, supporting a common catalytic mechanism in animal and plant FAAH enzymes. Overexpression of these inactive AtFAAH mutants in Arabidopsis showed no growth enhancement and no NAE tolerance, but still rendered the seedlings hypersensitive to ABA and hypersusceptible to nonhost pathogens to a degree similar to the overexpression of the native AtFAAH. Taken together, our findings suggest that the AtFAAH influences plant growth and interacts with ABA signaling and plant defense through distinctly different mechanisms.

Related Organizations
Keywords

plants, Arabidopsis Proteins, Hydrolysis, enzymes, Arabidopsis, Plants, Genetically Modified, Models, Biological, Catalysis, Recombinant Proteins, Amidohydrolases, lipids, lipoproteins, Epitopes, Gene Expression Regulation, Plant, Mutation, Mutagenesis, Site-Directed, Amino Acids, Abscisic Acid, Plant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
gold