The epidermal growth factor system in caenorhabditis elegans
The epidermal growth factor system in caenorhabditis elegans
The single known epidermal growth factor-like growth factor and single epidermal growth factor receptor in Caenorhabditis elegans mediate two types of processes, each via a distinct signal transduction pathway. Several instances of cell fate specification during organogenesis require the RAS-MAP kinase pathway, as well as multiple nuclear factors. By contrast, appropriate myoepithelial contractions during ovulation involve IP3-mediated signal transduction. Positive modulators of the RAS pathway include KSR, SUR-8, phosphatase PP2A, and a zinc cation diffusion facilitator. Negative regulators of the RAS pathway include homologs of CBL, GAP-1, ACK, and MAP kinase phosphatase, while negative regulators of the IP3 pathway are enzymes that modify IP3. In addition to its stimulation of RAS activity, the GRB2 homolog SEM-5 acts negatively on both signaling pathways, as does the Ack-related kinase ARK-1.
- California Institute of Technology United States
ErbB Receptors, 570, Animals, Humans, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Forecasting, Signal Transduction
ErbB Receptors, 570, Animals, Humans, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Forecasting, Signal Transduction
1 Research products, page 1 of 1
- 1998IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).81 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
