Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology of the Cell
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
Data sources: PubMed Central
Molecular Biology of the Cell
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Phosphoinositide 3-kinase β regulates chromosome segregation in mitosis

Authors: Silió, Virginia; Redondo-Muñoz, Javier; Carrera, Ana C.;

Phosphoinositide 3-kinase β regulates chromosome segregation in mitosis

Abstract

Class IA phosphoinositide 3-kinases (PI3K) are enzymes composed of a p85 regulatory and a p110 catalytic subunit that control formation of 3-poly-phosphoinositides (PIP3). The PI3K pathway regulates cell survival, migration, and division, and is mutated in approximately half of human tumors. For this reason, it is important to define the function of the ubiquitous PI3K subunits, p110α and p110β. Whereas p110α is activated at G1-phase entry and promotes protein synthesis and gene expression, p110β activity peaks in S phase and regulates DNA synthesis. PI3K activity also increases at the onset of mitosis, but the isoform activated is unknown; we have examined p110α and p110β function in mitosis. p110α was activated at mitosis entry and regulated early mitotic events, such as PIP3 generation, prometaphase progression, and spindle orientation. In contrast, p110β was activated near metaphase and controlled dynein/dynactin and Aurora B activities in kinetochores, chromosome segregation, and optimal function of the spindle checkpoint. These results reveal a p110β function in preserving genomic stability during mitosis.

Keywords

Cell Survival, Cell Cycle, Dyneins, Mitosis, Articles, DNA, Protein Serine-Threonine Kinases, Class Ia Phosphatidylinositol 3-Kinase, Mice, Phosphatidylinositol 3-Kinases, Aurora Kinases, Chromosome Segregation, NIH 3T3 Cells, Animals, Aurora Kinase B, Humans, Protein Isoforms, Phosphorylation, Kinetochores, HeLa Cells, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Green
hybrid