Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Urologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Urology
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
European Urology
Article . 2008
versions View all 2 versions

Marked Gene Transcript Level Alterations Occur Early During Radical Prostatectomy

Authors: Thorsten, Schlomm; Esther, Näkel; Andreas, Lübke; Andreas, Buness; Felix K-H, Chun; Thomas, Steuber; Markus, Graefen; +7 Authors

Marked Gene Transcript Level Alterations Occur Early During Radical Prostatectomy

Abstract

Gene expression analyses have become an important approach to understand the biology of cancer. However, transcript level patterns and RNA quality could rapidly change in response to ischemic and mechanical stress. Studies have shown that this occurs both perioperatively and after surgical removal of organs.To better understand the relative importance of perioperative and postoperative gene expression changes, we performed quantitative reverse transcription-polymerase chain reactions on the transcripts of 91 cancer-related genes from normal and cancerous prostate tissues from 10 patients at eight different time points during surgical manipulation and after removal of the prostate.The mRNA levels of 8 (EGR1, p21, KRT17, PIM1, S100P, TNFRSF, WFDC2, and TRIM29) of 91 genes changed significantly with time of surgery in normal and tumor tissue. Remarkably, all eight genes were up-regulated, a reaction that was most prominent during the early intraoperative period. Additional changes occurred but were much less prominent during the first postoperative hour.Our results substantially challenge the utility of immediate postoperative tissue sampling. At least for prostate cancer, the data suggest that preoperative tissue collection by core biopsies is optimal for studying molecular changes in normal and neoplastic prostate tissues.

Keywords

Male, Prostatectomy, Transcription, Genetic, Reverse Transcriptase Polymerase Chain Reaction, Biopsy, Gene Expression Profiling, Prostatic Neoplasms, DNA, Neoplasm, Middle Aged, Statistics, Nonparametric, Up-Regulation, Gene Expression Regulation, Neoplastic, Humans, Postoperative Period, RNA, Messenger, Aged, Genes, Neoplasm

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Average
Top 10%
Top 10%
Related to Research communities
Cancer Research