Identification of a core set of signature cell cycle genes whose relative order of time to peak expression is conserved across species
Identification of a core set of signature cell cycle genes whose relative order of time to peak expression is conserved across species
A cell division cycle is a well-coordinated process in eukaryotes with cell cycle genes exhibiting a periodic expression over time. There is considerable interest among cell biologists to determine genes that are periodic in multiple organisms and whether such genes are also evolutionarily conserved in their relative order of time to peak expression. Interestingly, periodicity is not well-conserved evolutionarily. A conservative estimate of a number of periodic genes common to fission yeast (Schizosaccharomyces pombe) and budding yeast (Saccharomyces cerevisiae) ('core set FB') is 35, while those common to fission yeast and humans (Homo sapiens) ('core set FH') is 24. Using a novel statistical methodology, we discover that the relative order of peak expression is conserved in ∼80% of FB genes and in ∼40% of FH genes. We also discover that the order is evolutionarily conserved in six genes which are potentially the core set of signature cell cycle genes. These include ace2 (a transcription factor) and polo-kinase plo1, which are well-known hubs of early M-phase clusters, cdc18 a key component of pre-replication complexes, mik1 which is critical for the establishment and maintenance of DNA damage check point, and histones hhf1 and hta2.
- National Institute of Health Pakistan
- ENVIRONMENTAL HEALTH SCIENCES
- National Institutes of Health United States
- University of Valladolid Spain
- National Institute of Environmental Health Sciences United States
Evolution, Molecular, Genes, cdc, Periodicity, Data Interpretation, Statistical, Genes, Fungal, Schizosaccharomyces, Computational Biology, Gene Expression, Humans, Saccharomyces cerevisiae
Evolution, Molecular, Genes, cdc, Periodicity, Data Interpretation, Statistical, Genes, Fungal, Schizosaccharomyces, Computational Biology, Gene Expression, Humans, Saccharomyces cerevisiae
31 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
