Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1997 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Tyrosine Phosphorylation of the CD3-ε Subunit of the T Cell Antigen Receptor Mediates Enhanced Association with Phosphatidylinositol 3-Kinase in Jurkat T Cells

Authors: I, de Aós; M H, Metzger; M, Exley; C E, Dahl; S, Misra; D, Zheng; L, Varticovski; +2 Authors

Tyrosine Phosphorylation of the CD3-ε Subunit of the T Cell Antigen Receptor Mediates Enhanced Association with Phosphatidylinositol 3-Kinase in Jurkat T Cells

Abstract

T cell receptor signaling results both in T cell proliferation and apoptosis. A key enzyme at the intersection of these downstream pathways is phosphatidylinositol 3'-kinase (PI 3-kinase). In a previous report, we showed that the p85alpha subunit of the PI 3-kinase preferentially associated with the CD3-zeta membrane-proximal immunoreceptor tyrosine-based activation motif of the zeta chain (zetaA-ITAM) (Exley, M., Varticovski, L., Peter, M., Sancho, J., and Terhorst, C. (1994) J. Biol. Chem. 269, 15140-15146). Here, we demonstrate that tyrosine phosphorylation of CD3-epsilon can recruit the PI 3-kinase enzyme in a T cell activation-dependent manner. In vivo studies with Jurkat cells stably transfected with a CD8-CD3-epsilon chimera (termed CD8-epsilon) shows that ligation of endogenous CD3-epsilon or CD8-epsilon by specific antibodies induces tyrosine phosphorylation of CD3-epsilon or CD8-epsilon, respectively. Increased tyrosine phosphorylation correlates with increased binding of p85alpha PI 3-kinase and recruitment of PI 3-kinase enzymatic activity to CD3-epsilon or CD8-epsilon proteins. Mutagenesis studies in COS-7 cells, transiently transfected with CD8-epsilon, p85alpha, and Fyn cDNAs in various combinations, show that both Tyr170 and Tyr181 within the CD3-epsilon-ITAM are required for efficient binding of p85alpha PI 3-kinase. Thus, replacement of Tyr170 by Phe (Y170F), or Tyr181 by Phe (Y181F) significantly reduces binding of p85alpha PI 3-kinase, whereas it does not affect binding of Fyn. Further in vitro experiments suggest that a direct binding of the tandem SH2 domains of p85alpha PI 3-kinase to the two phosphorylated tyrosines in a single CD3-epsilon-ITAM may occur. The data also support a model in which a single CD3 subunit can recruit distinct effector molecules by means of TCR-mediated differential ITAM phosphorylation.

Keywords

Binding Sites, Base Sequence, Recombinant Fusion Proteins, Molecular Sequence Data, Receptors, Antigen, T-Cell, Lymphocyte Activation, Antibodies, Jurkat Cells, Phosphatidylinositol 3-Kinases, Phosphotransferases (Alcohol Group Acceptor), Oligodeoxyribonucleotides, Mutagenesis, Site-Directed, Humans, Point Mutation, Amino Acid Sequence, Cloning, Molecular, Phosphorylation, Peptides, Phosphotyrosine, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Average
Top 10%
Top 10%
gold