Widespread differences in cortex DNA methylation of the “language gene”CNTNAP2between humans and chimpanzees
Widespread differences in cortex DNA methylation of the “language gene”CNTNAP2between humans and chimpanzees
CNTNAP2, one of the largest genes in the human genome, has been linked to human-specific language abilities and neurodevelopmental disorders. Our hypothesis is that epigenetic rather than genetic changes have accelerated the evolution of the human brain. To compare the cortex DNA methylation patterns of human and chimpanzee CNTNAP2 at ultra-high resolution, we combined methylated DNA immunoprecipitation (MeDIP) with NimbleGen tiling arrays for the orthologous gene and flanking sequences. Approximately 1.59 Mb of the 2.51 Mb target region could be aligned and analyzed with a customized algorithm in both species. More than one fifth (0.34 Mb) of the analyzed sequence throughout the entire gene displayed significant methylation differences between six human and five chimpanzee cortices. One of the most striking interspecies differences with 28% methylation in human and 59% in chimpanzee cortex (by bisulfite pyrosequencing) lies in a region 300 bp upstream of human SNP rs7794745 which has been associated with autism and parent-of-origin effects. Quantitative real-time RT PCR revealed that the protein-coding splice variant CNTNAP2-201 is 1.6-fold upregulated in human cortex, compared with the chimpanzee. Transcripts CNTNAP2-001, -002, and -003 did not show skewed allelic expression, which argues against CNTNAP2 imprinting, at least in adult human brain. Collectively, our results suggest widespread cortex DNA methylation changes in CNTNAP2 since the human-chimpanzee split, supporting a role for CNTNAP2 fine-regulation in human-specific language and communication traits.
- University Hospital Würzburg Germany
- University of Würzburg Germany
- University of Melbourne Australia
- Institut für Humangenetik Germany
- University of Freiburg Germany
Adult, Aged, 80 and over, Cerebral Cortex, Male, Pan troglodytes, 610, Membrane Proteins, Nerve Tissue Proteins, DNA Methylation, Middle Aged, Young Adult, Species Specificity, Animals, Humans, Protein Splicing, Female, Child, Research Paper, Aged, Language
Adult, Aged, 80 and over, Cerebral Cortex, Male, Pan troglodytes, 610, Membrane Proteins, Nerve Tissue Proteins, DNA Methylation, Middle Aged, Young Adult, Species Specificity, Animals, Humans, Protein Splicing, Female, Child, Research Paper, Aged, Language
30 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
