Structure–Function Analysis of Yeast Tubulin
Structure–Function Analysis of Yeast Tubulin
Microtubules play essential roles in a wide variety of cellular processes including cell division, motility, and vesicular transport. Microtubule function depends on the polymerization dynamics of tubulin and specific interactions between tubulin and diverse microtubule-associated proteins. To date, investigation of the structural and functional properties of tubulin and tubulin mutants has been limited by the inability to obtain functional protein from overexpression systems, and by the heterogeneous mixture of tubulin isotypes typically isolated from higher eukaryotes. The budding yeast, Saccharomyces cerevisiae, has emerged as a leading system for tubulin structure-function analysis. Yeast cells encode a single beta-tubulin gene and can be engineered to express just one of two alpha isotypes. Moreover, yeast allows site-directed modification of tubulin genes at the endogenous loci expressed under the native promoter and regulatory elements. These advantageous features provide a homogeneous and controlled environment for analysis of the functional consequences of specific mutations. Here, we present the techniques to generate site-specific tubulin mutations in diploid and haploid cells, assess the ability of the mutated protein to support cell viability, measure overall microtubule stability, and define changes in the specific parameters of microtubule dynamic instability. We also outline strategies to determine whether mutations disrupt interactions with microtubule-associated proteins. Microtubule-based functions in yeast are well defined, which allows the observed changes in microtubule properties to be related to the role of microtubules in specific cellular processes.
- University of Chicago United States
- University of Illinois at Chicago United States
Luminescent Proteins, Structure-Activity Relationship, Saccharomyces cerevisiae Proteins, Bacterial Proteins, Cell Survival, Protein Isoforms, Saccharomyces cerevisiae, Promoter Regions, Genetic, Microtubule-Associated Proteins
Luminescent Proteins, Structure-Activity Relationship, Saccharomyces cerevisiae Proteins, Bacterial Proteins, Cell Survival, Protein Isoforms, Saccharomyces cerevisiae, Promoter Regions, Genetic, Microtubule-Associated Proteins
3 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
