Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2004
versions View all 3 versions

Functional silencing of hepatic microsomal glucose‐6‐phosphatase gene expression in vivo by adenovirus‐mediated delivery of short hairpin RNA

Authors: Huang, Alan; Chen, Yan; Wang, Xinzhong; Zhao, Shanchuan; Su, Nancy; White, David W;

Functional silencing of hepatic microsomal glucose‐6‐phosphatase gene expression in vivo by adenovirus‐mediated delivery of short hairpin RNA

Abstract

An expression cassette containing mouse U6 polymerase III promoter directing expression of short hairpin RNA (shRNA) targeting murine microsomal glucose‐6‐phosphatase (G6P) transcript was generated. This construct was packaged into an adenoviral (AdV) backbone and viral stocks generated. Mice injected intravenously with AdV‐G6PshRNA exhibited a significant reduction in postprandial glucose levels and had significantly elevated steady‐state hepatic glycogen stores. Target gene silencing was confirmed by measurements demonstrating a significant reduction in both hepatic G6P transcript level and phosphohydrolase activity. These findings provide evidence that AdV delivery of expressed shRNA can be a productive tool to explore gene function in vivo.

Related Organizations
Keywords

Blood Glucose, Male, Green Fluorescent Proteins, Gene Expression Regulation, Enzymologic, Adenoviridae, Mice, RNA interference, L Cells, Adenovirus, Animals, Humans, Gene Silencing, Gene Transfer Techniques, Gene silencing, Liver Glycogen, Rats, Mice, Inbred C57BL, Luminescent Proteins, MicroRNAs, Glucose-6-Phosphatase, Microsomes, Liver, Short hairpin RNA, Glucose-6-phosphatase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Top 10%
bronze