Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Investigative Ophtha...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Investigative Ophthalmology & Visual Science
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Role of Neuronal Nitric Oxide Synthase in Regulating Retinal Blood Flow During Flicker-Induced Hyperemia in Cats

Authors: Takafumi, Yoshioka; Taiji, Nagaoka; Youngseok, Song; Harumasa, Yokota; Tomofumi, Tani; Akitoshi, Yoshida;

Role of Neuronal Nitric Oxide Synthase in Regulating Retinal Blood Flow During Flicker-Induced Hyperemia in Cats

Abstract

To investigate how neuronal nitric oxide synthase (nNOS) contributes to regulation of the retinal circulation during rest and flicker stimulation in cats.Using laser Doppler velocimetry, we measured the vessel diameter and blood velocity simultaneously and calculated the retinal blood flow (RBF) in feline first-order retinal arterioles. After intravitreal injections of Nω-Nitro-L-arginine methyl ester (L-NAME), a nonselective NOS inhibitor, and Nω-propyl-L-arginine (L-NPA), a selective nNOS inhibitor, we continuously monitored the retinal circulation without any perturbations for 2 hours. We then examined the changes in the RBF in response to 16-Hz flicker stimuli for 3 minutes at 2 hours after intravitreal injection of phosphate-buffered saline (PBS) as a control, L-NAME, L-NPA, and thromboxane A2 (TXA2) analogue U46619 as a basal tone-adjusted control.After intravitreal injection of L-NAME and L-NPA, the baseline RBF decreased gradually in a dose-dependent manner. In the PBS group, the RBF increased gradually and reached a maximal level after 2 to 3 minutes of flicker stimuli. After 3 minutes of 16-Hz flicker stimuli, the RBF increased by 53.5% ± 3.4% compared with baseline. In the L-NAME and L-NPA groups, the increases in RBF during flicker stimulation were attenuated significantly compared with the PBS group. In the TXA2 group, the reduction in the flicker-induced increase in RBF was comparable to that in the PBS group.The current results suggested that increased RBF in response to flicker stimulation may be mediated by nitric oxide (NO) production via nNOS activation.

Related Organizations
Keywords

Male, Hemodynamics, Retinal Vessels, Hyperemia, Nitric Oxide Synthase Type I, Arginine, Retina, NG-Nitroarginine Methyl Ester, Regional Blood Flow, Intravitreal Injections, Cats, Laser-Doppler Flowmetry, Animals, Female, Enzyme Inhibitors, Blood Flow Velocity, Photic Stimulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
gold