Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2007 . Peer-reviewed
Data sources: Crossref
UNC Dataverse
Article . 2006
Data sources: Datacite
Development
Article . 2007
versions View all 3 versions

Abelson kinase (Abl) and RhoGEF2 regulate actin organization during cell constriction inDrosophila

Authors: Donald T, Fox; Mark, Peifer;

Abelson kinase (Abl) and RhoGEF2 regulate actin organization during cell constriction inDrosophila

Abstract

Morphogenesis involves the interplay of different cytoskeletal regulators. Investigating how they interact during a given morphogenetic event will help us understand animal development. Studies of ventral furrow formation, a morphogenetic event during Drosophila gastrulation, have identified a signaling pathway involving the G-protein Concertina (Cta) and the Rho activator RhoGEF2. Although these regulators act to promote stable myosin accumulation and apical cell constriction, loss-of-function phenotypes for each of these pathway members is not equivalent, suggesting the existence of additional ventral furrow regulators. Here, we report the identification of Abelson kinase (Abl) as a novel ventral furrow regulator. We find that Abl acts apically to suppress the accumulation of both Enabled (Ena) and actin in mesodermal cells during ventral furrow formation. Further, RhoGEF2 also regulates ordered actin localization during ventral furrow formation, whereas its activator, Cta, does not. Taken together, our data suggest that there are two crucial preconditions for apical constriction in the ventral furrow:myosin stabilization/activation, regulated by Cta and RhoGEF2; and the organization of apical actin, regulated by Abl and RhoGEF2. These observations identify an important morphogenetic role for Abl and suggest a conserved mechanism for this kinase during apical cell constriction.

Keywords

rho GTP-Binding Proteins, Base Sequence, Gene Expression Regulation, Developmental, Cell Cycle Proteins, Genes, Insect, DNA, Myosins, Protein-Tyrosine Kinases, Models, Biological, Actins, Epithelium, Mutation, Animals, Drosophila Proteins, Drosophila, Cell Shape, Body Patterning, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    127
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
127
Top 10%
Top 10%
Top 1%
bronze