Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 1995
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 1995 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Myogenin's Functions Do Not Overlap with Those of MyoD or Myf-5 during Mouse Embryogenesis

Authors: Alan Rawls; Thomas Braun; Julia Hsi Morris; Hans-Henning Arnold; William H. Klein; Eric N. Olson; Michael A. Rudnicki;

Myogenin's Functions Do Not Overlap with Those of MyoD or Myf-5 during Mouse Embryogenesis

Abstract

The four myogenic basic helix-loop-helix proteins, MyoD, myogenin, Myf-5, and MRF4, can each activate skeletal muscle differentiation when introduced into nonmuscle cells. During embryogenesis, each of these genes is expressed in a unique but overlapping pattern in skeletal muscle precursors and their descendants. Gene knockout experiments have shown that MyoD and Myf-5 play seemingly redundant roles in the generation of myoblasts. However, the role of either of these genes during differentiation in vivo has not been determined. In contrast, a myogenin-null mutation blocks differentiation and results in a dramatic decrease in muscle fiber formation, yet the role of myogenin in the generation or maintenance of myoblast populations is not known. Because myogenin possesses the same myogenic activity as MyoD and Myf-5 in vitro and the expression patterns of these three genes overlap in vivo, we sought to determine if myogenin shares certain functions with either MyoD or Myf-5 in vivo. We therefore generated mice with double homozygous null mutations in the genes encoding MyoD and myogenin or Myf-5 and myogenin. These mice showed embryonic and perinatal phenotypes characteristic of the combined defects observed in mice mutant for each gene alone. As shown by histological analysis and expression of muscle-specific genes, the numbers of undifferentiated myoblasts and residual myofibers were comparable between myogenin-mutant homozygotes and the double-mutant homozygotes. Myoblasts isolated from neonates of the combined mutant genotypes underwent myogenesis in tissue culture, indicating that no more than two of the four myogenic factors are required to support muscle differentiation. These results demonstrate that the functions of myogenin do not overlap with those of MyoD or Myf-5 and support the view that myogenin acts in a genetic pathway downstream of MyoD and Myf-5.

Keywords

Molecular Sequence Data, Gene Expression, Muscle Proteins, Embryonic and Fetal Development, Mice, Animals, Muscle, Skeletal, Molecular Biology, Cells, Cultured, In Situ Hybridization, DNA Primers, MyoD Protein, Mice, Knockout, Base Sequence, Helix-Loop-Helix Motifs, Cell Differentiation, Cell Biology, DNA-Binding Proteins, Animals, Newborn, Myogenic Regulatory Factors, Myogenin, Myogenic Regulatory Factor 5, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    132
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
132
Top 10%
Top 10%
Top 10%
hybrid