Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Radiation Oncologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radiation Oncology
Article . 2017 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radiation Oncology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2017
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radiation Oncology
Article . 2017
Data sources: DOAJ
versions View all 4 versions

Comprehensive target geometric errors and margin assessment in stereotactic partial breast irradiation

Authors: Xin Zhen; Bo Zhao; Zhuoyu Wang; Robert Timmerman; Ann Spangler; Nathan Kim; Asal Rahimi; +1 Authors

Comprehensive target geometric errors and margin assessment in stereotactic partial breast irradiation

Abstract

Recently developed stereotactic partial breast irradiation (S-PBI) allows delivery of a high biologically potent dose to the target while sparing adjacent critical organs and normal tissue. With S-PBI tumoricidal doses, accurate and precise dose delivery is critical to achieve high treatment quality. This study is to investigate both rigid and non-rigid components of target geometric error and their corresponding margins in S-PBI and identify correlated clinical factors.Forty-three early-stage breast cancer patients with implanted gold fiducial markers were enrolled in the study. Fiducial positions recorded on the orthogonal kV images on a Cyberknife system during treatment were used to estimate intra-fraction errors and composite errors (including intra-fraction errors and residual errors after patient setup). Both rigid and non-rigid components of intra-fraction and composite errors were analyzed and used to estimate rigid and non-rigid margins, respectively. Univariate and multivariate linear regressions were conducted to evaluate correlations between clinical factors and errors.For the study group, the intra-fraction rigid and non-rigid errors are 2.0 ± 0.6 mm and 0.3 ± 0.2 mm, respectively. The composite rigid and non-rigid errors are 2.3 ± 0.5 mm and 1.3 ± 0.8 mm, respectively. The rigid margins in the left-right, anterior-posterior, and superior-inferior directions are estimated as 2.1, 2.4, and 2.3 mm, respectively. The estimated non-rigid margin, assumed to be isotropic, is 1.7 mm. The outer breast quadrants are more susceptible to composite errors occurrence than the inner breast quadrants. The target to chest wall distance is the clinical factor correlated with target geometric errors.This is the first comprehensive analysis of breast target geometric rigid and non-rigid errors in S-PBI. Upon the estimation, the non-rigid margin is comparable to rigid margin, and therefore should be included in planning target volume as it cannot be accounted for by the Cyberknife system. Treatment margins selection also need to consider the impact of relevant clinical factor.

Related Organizations
Keywords

Cyberknife, Stereotactic partial breast irradiation, Research, Radiotherapy Planning, Computer-Assisted, R895-920, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, Breast Neoplasms, Radiosurgery, Medical physics. Medical radiology. Nuclear medicine, Fiducial Markers, Humans, Female, Fiducial, RC254-282, Margin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Average
Green
gold