Powered by OpenAIRE graph

Identification of Ca2+-dependent binding partners for the neuronal calcium sensor protein neurocalcin δ: interaction with actin, clathrin and tubulin

Authors: Lenka, Ivings; Stephen R, Pennington; Roz, Jenkins; Jamie L, Weiss; Robert D, Burgoyne;

Identification of Ca2+-dependent binding partners for the neuronal calcium sensor protein neurocalcin δ: interaction with actin, clathrin and tubulin

Abstract

The neuronal calcium sensors are a family of EF-hand-containing Ca2+-binding proteins expressed predominantly in retinal photoreceptors and neurons. One of the family members is neurocalcin δ, the function of which is unknown. As an approach to elucidating the protein interactions made by neurocalcin δ, we have identified brain cytosolic proteins that bind to neurocalcin δ in a Ca2+-dependent manner. We used immobilized recombinant myristoylated neurocalcin δ combined with protein identification using MS. We demonstrate a specific interaction with clathrin heavy chain, α- and β-tubulin, and actin. These interactions were dependent upon myristoylation of neurocalcin δ indicating that the N-terminal myristoyl group may be important for protein—protein interactions in addition to membrane association. Direct binding of neurocalcin δ to clathrin, tubulin and actin was confirmed using an overlay assay. These interactions were also demonstrated for endogenous neurocalcin δ by co-immunoprecipitation from rat brain cytosol. When expressed in HeLa cells, neurocalcin δ was cytosolic at resting Ca2+ levels but translocated to membranes, including a perinuclear compartment (trans-Golgi network) where it co-localized with clathrin, following Ca2+ elevation. These data suggest the possibility that neurocalcin δ functions in the control of clathrin-coated vesicle traffic.

Related Organizations
Keywords

Brain Chemistry, Microscopy, Confocal, Calcium-Binding Proteins, Nerve Tissue Proteins, Peptide Mapping, Actins, Clathrin, Rats, Neurocalcin, Chromatography, Gel, Animals, Humans, Biotinylation, Calcium, Electrophoresis, Polyacrylamide Gel, Rats, Wistar, Egtazic Acid, Receptors, Calcium-Sensing, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%