Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Telomerase- and recombination-independent immortalization of budding yeast

Authors: Maringele L; Lydall D;

Telomerase- and recombination-independent immortalization of budding yeast

Abstract

It is generally assumed that there are only two ways to maintain the ends of chromosomes in yeast and mammalian nuclei: telomerase and recombination. Without telomerase and recombination, cells enter senescence, a state of permanent growth arrest. We found that the decisive role in preventing senescent budding yeast cells from dividing is played by the Exo1 nuclease. In the absence of Exo1, telomerase- and recombination-defective yeast can resume cell cycle progression, despite degradation of telomeric regions from many chromosomes. As degradation progresses toward internal chromosomal regions, a progressive decrease in viability would be expected, caused by loss of essential genes. However, this was not the case. We demonstrate that extensive degradation and loss of essential genes can be efficiently prevented through a little-studied mechanism of DNA double-strand-break repair, in which short DNA palindromes induce formation of large DNA palindromes. For the first time, we show that large palindromes form as a natural consequence of postsenescence growth and that they become essential for immortalization in the absence of telomerase activity.

Related Organizations
Keywords

Recombination, Genetic, Base Sequence, DNA Repair, Molecular Sequence Data, Telomere, Exodeoxyribonucleases, Gene Expression Regulation, Fungal, Saccharomycetales, Chromosomes, Fungal, Telomerase, Cellular Senescence, Cell Proliferation, Repetitive Sequences, Nucleic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 10%
Top 10%
Top 10%
Published in a Diamond OA journal