Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2000 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2000
versions View all 2 versions

Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth

Authors: G, Zhu; P T, Spellman; T, Volpe; P O, Brown; D, Botstein; T N, Davis; B, Futcher;

Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth

Abstract

There are about 800 genes in Saccharomyces cerevisiae whose transcription is cell-cycle regulated. Some of these form clusters of co-regulated genes. The 'CLB2' cluster contains 33 genes whose transcription peaks early in mitosis, including CLB1, CLB2, SWI5, ACE2, CDC5, CDC20 and other genes important for mitosis. Here we find that the genes in this cluster lose their cell cycle regulation in a mutant that lacks two forkhead transcription factors, Fkh1 and Fkh2. Fkh2 protein is associated with the promoters of CLB2, SWI5 and other genes of the cluster. These results indicate that Fkh proteins are transcription factors for the CLB2 cluster. The fkh1 fkh2 mutant also displays aberrant regulation of the 'SIC1' cluster, whose member genes are expressed in the M-G1 interval and are involved in mitotic exit. This aberrant regulation may be due to aberrant expression of the transcription factors Swi5 and Ace2, which are members of the CLB2 cluster and controllers of the SIC1 cluster. Thus, a cascade of transcription factors operates late in the cell cycle. Finally, the fkh1 fkh2 mutant displays a constitutive pseudohyphal morphology, indicating that Fkh1 and Fkh2 may help control the switch to this mode of growth.

Keywords

Binding Sites, Saccharomyces cerevisiae Proteins, Genes, Fungal, Nuclear Proteins, Forkhead Transcription Factors, Saccharomyces cerevisiae, Cyclin B, Precipitin Tests, Genes, cdc, Gene Expression Regulation, Fungal, Multigene Family, Mutation, DNA, Fungal, Promoter Regions, Genetic, Oligonucleotide Array Sequence Analysis, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    314
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
314
Top 10%
Top 1%
Top 1%