Neuronal development in the Drosophila retina
pmid: 8331338
Neuronal development in the Drosophila retina
AbstractNervous systems of higher organisms are comprised of a variety of cell types which are interconnected in a precise manner. The molecular mechanisms that lead to the specification of neuronal cell types are not well understood. The compound eye of the fruit fly Drosophila is an attractive experimental system to understand these mechanism. The compound eye is a reiterated neural pattern with several hundred unit structures and is amenable to both classical and molecular genetic methods. During the development of the compound eye cell–cell interactions and positional information play a critical role in the determination of cell fate. Recent genetic and molecular studies have provided important clues regarding the nature of the molecules involved in cellular signalling and neuronal differentiation. © 1993 John Wiley & Sons, Inc.
- King’s University United States
- City University of New York United States
- City College of New York United States
Neurons, Gene Expression Regulation, Animals, Cell Differentiation, Drosophila, Eye, Retina
Neurons, Gene Expression Regulation, Animals, Cell Differentiation, Drosophila, Eye, Retina
313 Research products, page 1 of 32
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
