Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao University of Copenh...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Science
Article . 2007 . Peer-reviewed
Data sources: Crossref
Science
Article . 2007
versions View all 2 versions

Anaphase Onset Before Complete DNA Replication with Intact Checkpoint Responses

Authors: Torres-Rosell, Jordi; De Piccoli, Giacomo; Cordon-Preciado, Violeta; Farmer, Sarah; Jarmuz, Adam; Machin, Felix; Pasero, Philippe; +3 Authors

Anaphase Onset Before Complete DNA Replication with Intact Checkpoint Responses

Abstract

Cellular checkpoints prevent mitosis in the presence of stalled replication forks. Whether checkpoints also ensure the completion of DNA replication before mitosis is unknown. Here, we show that in yeast smc5-smc6 mutants, which are related to cohesin and condensin, replication is delayed, most significantly at natural replication-impeding loci like the ribosomal DNA gene cluster. In the absence of Smc5-Smc6, chromosome nondisjunction occurs as a consequence of mitotic entry with unfinished replication despite intact checkpoint responses. Eliminating processes that obstruct replication fork progression restores the temporal uncoupling between replication and segregation in smc5-smc6 mutants. We propose that the completion of replication is not under the surveillance of known checkpoints.

Keywords

DNA Replication, Models, Genetic, Genes, Fungal, Mitosis, Cell Cycle Proteins, Genes, rRNA, Saccharomyces cerevisiae, Protein Serine-Threonine Kinases, DNA, Ribosomal, S Phase, Checkpoint Kinase 2, Nondisjunction, Genetic, Chromosome Segregation, Mutation, DNA Breaks, Double-Stranded, Chromosomes, Fungal, Anaphase, DNA, Fungal, Metaphase, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    126
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
126
Top 10%
Top 10%
Top 10%