Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2001 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Fibroblast Growth Factor Homologous Factor 1B Binds to the C Terminus of the Tetrodotoxin-resistant Sodium Channel rNav1.9a (NaN)

Authors: , Liu Cj; S D, Dib-Hajj; S G, Waxman;

Fibroblast Growth Factor Homologous Factor 1B Binds to the C Terminus of the Tetrodotoxin-resistant Sodium Channel rNav1.9a (NaN)

Abstract

In this study we demonstrate a direct interaction between a cytosolic fibroblast growth factor family member and a sodium channel. A yeast two-hybrid screen for proteins that associate with the cytoplasmic domains of the tetrodotoxin-resistant sodium channel rNa(v)1.9a (NaN) led to the identification of fibroblast growth factor homologous factor 1B (FHF1B), a member of the fibroblast growth factor family, as an interacting partner of rNa(v)1.9a. FHF1B selectively interacts with the C-terminal region but not the other four intracellular segments of rNa(v)1.9a. FHF1B binds directly to the C-terminal polypeptide of rNa(v)1.9a both in vitro and in mammalian cell lines. The N-terminal 5-77 amino acid residues of FHF1B are essential for binding to rNa(v)1.9a. FHF1B did not interact with C termini of two other sodium channels hNa(v)1.7a (hNaNE) and rNa(v)1.8a (SNS), which share 50% similarity to the C-terminal polypeptide of rNa(v)1.9a. FHF1B is the first growth factor found to bind specifically to a sodium channel. Although the functional significance of this interaction is not clear, FHF1B may affect the rNa(v)1.9a channel directly or by recruiting other proteins to the channel complex. Alternatively, it is possible that rNa(v)1.9a may help deliver this factor to the cell membrane, where it exerts its function.

Related Organizations
Keywords

Cytoplasm, DNA, Complementary, Blotting, Western, Molecular Sequence Data, Neuropeptides, Drug Resistance, 3T3 Cells, Models, Biological, Cell Line, Fibroblast Growth Factors, Mice, Animals, Humans, Amino Acid Sequence, Growth Substances, NAV1.9 Voltage-Gated Sodium Channel, Conserved Sequence, Gene Library, Glutathione Transferase, Plasmids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    118
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
118
Top 10%
Top 10%
Top 10%
gold