The Epigenetic Modifier Ubiquitin-specific Protease 22 (USP22) Regulates Embryonic Stem Cell Differentiation via Transcriptional Repression of Sex-determining Region Y-box 2 (SOX2)
The Epigenetic Modifier Ubiquitin-specific Protease 22 (USP22) Regulates Embryonic Stem Cell Differentiation via Transcriptional Repression of Sex-determining Region Y-box 2 (SOX2)
Pluripotent embryonic stem cells (ESCs) undergo self-renewal until stimulated to differentiate along specific lineage pathways. Many of the transcriptional networks that drive reprogramming of a self-renewing ESC to a differentiating cell have been identified. However, fundamental questions remain unanswered about the epigenetic programs that control these changes in gene expression. Here we report that the histone ubiquitin hydrolase ubiquitin-specific protease 22 (USP22) is a critical epigenetic modifier that controls this transition from self-renewal to differentiation. USP22 is induced as ESCs differentiate and is necessary for differentiation into all three germ layers. We further report that USP22 is a transcriptional repressor of the locus encoding the core pluripotency factor sex-determining region Y-box 2 (SOX2) in ESCs, and this repression is required for efficient differentiation. USP22 occupies the Sox2 promoter and hydrolyzes monoubiquitin from ubiquitylated histone H2B and blocks transcription of the Sox2 locus. Our study reveals an epigenetic mechanism that represses the core pluripotency transcriptional network in ESCs, allowing ESCs to transition from a state of self-renewal into lineage-specific differentiation programs.
- Thomas Jefferson University United States
- University of Pennsylvania United States
Pluripotent Stem Cells, Transcription, Genetic, Gene Expression Profiling, SOXB1 Transcription Factors, Gene Expression Regulation, Developmental, Cell Differentiation, Cell Line, Epigenesis, Genetic, Histones, Mice, Phenotype, Sirtuin 1, Genetic Loci, Endopeptidases, Animals, RNA, Messenger, Ubiquitin Thiolesterase, Embryonic Stem Cells, Cell Proliferation, Protein Binding
Pluripotent Stem Cells, Transcription, Genetic, Gene Expression Profiling, SOXB1 Transcription Factors, Gene Expression Regulation, Developmental, Cell Differentiation, Cell Line, Epigenesis, Genetic, Histones, Mice, Phenotype, Sirtuin 1, Genetic Loci, Endopeptidases, Animals, RNA, Messenger, Ubiquitin Thiolesterase, Embryonic Stem Cells, Cell Proliferation, Protein Binding
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).73 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
