Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Cell Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Cell Research
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

MiR-145, a microRNA targeting ADAM17, inhibits the invasion and migration of nasopharyngeal carcinoma cells

Authors: Nan Zhang; Jian-Zhong Wu; Teng Huang; Xia He; De-Jun Wang; Jing Wu; Ning Jiang; +9 Authors

MiR-145, a microRNA targeting ADAM17, inhibits the invasion and migration of nasopharyngeal carcinoma cells

Abstract

MiR-145 is downregulated and functions as a tumor suppressor in many malignancies. In this study, the biological function, molecular mechanism, and direct target genes of miR-145 in nasopharyngeal carcinoma (NPC) cells were investigated. Cell survival was detected by cell viability assay, and cell cycle was determined through flow cytometry. Invasion and migration of NPC cells were examined using cell invasion and wound healing assays, respectively. A disintegrin and metalloproteinase 17 (ADAM17) was verified as the target of miR-145 through luciferase reporter assay, qRT-PCR, and Western blot analysis. In NPC cell lines, miR-145 expression was significantly downregulated and ADAM17 protein expression was upregulated. ADAM17 was downregulated at the post-transcriptional level by miR-145 via the binding site of ADAM17-3'UTR. Transfection with miR-145 mimic suppressed cell growth and induced cell cycle arrest in the G0/G1 phase by upregulating key G0/G1 phase regulators, namely, p53 and p21. MiR-145 also inhibited cellular migration and invasion through targeting ADAM17 involving the regulation of EGFR and E-cadherin. Knockdown of ADAM17 elicited similar effects to that of miR-145 on NPC cells. This study reveals that miR-145 suppressed the invasion and migration of NPC cells by targeting ADAM17. Thus, miR-145 could be a therapeutic target for NPC.

Related Organizations
Keywords

Nasopharyngeal Carcinoma, Carcinoma, Down-Regulation, Nasopharyngeal Neoplasms, ADAM17 Protein, Cadherins, G1 Phase Cell Cycle Checkpoints, Resting Phase, Cell Cycle, Up-Regulation, ErbB Receptors, Gene Expression Regulation, Neoplastic, ADAM Proteins, MicroRNAs, Cell Movement, Cell Line, Tumor, Humans, Neoplasm Invasiveness, RNA Processing, Post-Transcriptional, 3' Untranslated Regions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%