Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cardiovascular Diabe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cardiovascular Diabetology
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cardiovascular Diabetology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cardiovascular Diabetology
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions

Basement membrane proteins in various arterial beds from individuals with and without type 2 diabetes mellitus: a proteome study

a proteome study
Authors: Lars Melholt Rasmussen; Jes S. Lindholt; Pia Søndergaard Jensen; Rasmus Søgaard Hansen; Anne-Sofie Faarvang Thorsen; Hans Christian Beck; Xenia Emilie Sinding Iversen; +3 Authors

Basement membrane proteins in various arterial beds from individuals with and without type 2 diabetes mellitus: a proteome study

Abstract

Abstract Background Basement membrane (BM) accumulation is a hallmark of micro-vessel disease in diabetes mellitus (DM). We previously reported marked upregulation of BM components in internal thoracic arteries (ITAs) from type 2 DM (T2DM) patients by mass spectrometry. Here, we first sought to determine if BM accumulation is a common feature of different arteries in T2DM, and second, to identify other effects of T2DM on the arterial proteome. Methods Human arterial samples collected during heart and vascular surgery from well-characterized patients and stored in the Odense Artery Biobank were analysed by liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). We included ascending thoracic aortas (ATA) (n = 10 (type 2 DM, T2DM) and n = 10 (non-DM)); laser capture micro-dissected plaque- and media compartments from carotid plaques (n = 10 (T2DM) and n = 9 (non-DM)); and media- and adventitia compartments from ITAs (n = 9 (T2DM) and n = 7 (non-DM)). Results We first extended our previous finding of BM accumulation in arteries from T2DM patients, as 7 of 12 pre-defined BM proteins were significantly upregulated in bulk ATAs consisting of > 90% media. Although less pronounced, BM components tended to be upregulated in the media of ITAs from T2DM patients, but not in the neighbouring adventitia. Overall, we did not detect effects on BM proteins in carotid plaques or in the plaque-associated media. Instead, complement factors, an RNA-binding protein and fibrinogens appeared to be regulated in these tissues from T2DM patients. Conclusion Our results suggest that accumulation of BM proteins is a general phenomenon in the medial layer of non-atherosclerotic arteries in patients with T2DM. Moreover, we identify additional T2DM-associated effects on the arterial proteome, which requires validation in future studies.

Keywords

Male, Proteomics, Basement membrane, Proteome, Aorta, Thoracic, Basement Membrane, Tandem Mass Spectrometry, Type 2 diabetes mellitus, Diseases of the circulatory (Cardiovascular) system, Humans, Mammary Arteries, Original Investigation, Aged, Aged, 80 and over, Mass spectrometry, Arteries, Middle Aged, Artery, Plaque, Atherosclerotic, Diabetes Mellitus, Type 2, RC666-701, Female, Carotid Artery, Internal, Diabetic Angiopathies, Chromatography, Liquid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold