<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cycling through development in Drosophila and other metazoa

doi: 10.1038/35050681
pmid: 11146648
Cycling through development in Drosophila and other metazoa
The cell-division cycle is an orchestrated sequence of events that results in the duplication of a cell. In metazoa, cell proliferation is regulated in response to differentiation signals and body-size parameters, which either induce cell duplication or arrest the cell cycle, to ensure that organs develop to the correct size. In addition, the cell cycle may be altered to meet specialized requirements. This can be seen in the rapid cleavage cycles of vertebrates and insects that lack gap phases, in the nested S phases of Drosophila, and in the endocycles of nematodes, insects, plants and mammals that lack mitosis. Here we present the various modes of cell-cycle regulation in metazoa and discuss their possible generation by a combination of universally conserved molecules and new regulatory circuits.
- University of California, San Francisco United States
- University of Colorado Boulder United States
- University of California System United States
Genes, cdc, Yeasts, Vertebrates, Animals, Gene Expression Regulation, Developmental, Humans, Drosophila, Cell Division, Signal Transduction
Genes, cdc, Yeasts, Vertebrates, Animals, Gene Expression Regulation, Developmental, Humans, Drosophila, Cell Division, Signal Transduction
34 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%