Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmental & Comp...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental & Comparative Immunology
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Multiple targets of the microRNA miR-8 contribute to immune homeostasis in Drosophila

Authors: Gang Jun, Lee; Seogang, Hyun;

Multiple targets of the microRNA miR-8 contribute to immune homeostasis in Drosophila

Abstract

MicroRNAs (miRNAs) are noncoding, around 22-nucleotide-long RNAs that exert significant modulatory roles in gene expression throughout the genome. As such, miRNAs take part in and modulate almost all biological processes like cell growth, development, and immunity. We previously showed that miR-8 miRNA plays a role in maintaining immune homeostasis in Drosophila. Here, we further discovered that targeting of multiple coding genes by miR-8 contributes to the maintenance of immune homeostasis. Toll and Dorsal, respectively the receptor and transcription factor in the Toll immune pathway, were found to be miR-8 targets, as shown by reporter assays and miR-8 null flies. Moreover, U-shaped (Ush), a previously verified miR-8 target, was seen to mediate miR-8 regulation of immune homeostasis. Consistently, overexpression of either Dorsal or Ush in the fat body led to increased Drosomycin expression, mimicking that induced by deletion of miR-8. Furthermore, mutation in Toll immune pathway or Ush rescues the abnormal expression of Drosomycin and lethality in miR-8 mutant. Thus, miR-8 regulates Drosophila immune homeostasis by targeting multiple immune genes, thereby contributing to survival.

Related Organizations
Keywords

MicroRNAs, Drosophila melanogaster, Toll-Like Receptors, Animals, Drosophila Proteins, Nuclear Proteins, Phosphoproteins, Immunity, Innate, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%