Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Insulin Receptor Substrate 1/2 (IRS1/2) Regulates Wnt/β-Catenin Signaling through Blocking Autophagic Degradation of Dishevelled2

Authors: Yongtao, Geng; Yanfang, Ju; Fangli, Ren; Ying, Qiu; Yasuhiko, Tomita; Miki, Tomoeda; Mioka, Kishida; +7 Authors

Insulin Receptor Substrate 1/2 (IRS1/2) Regulates Wnt/β-Catenin Signaling through Blocking Autophagic Degradation of Dishevelled2

Abstract

Wnt signaling plays a pivotal role in cell proliferation, tissue homeostasis, and tumorigenesis. Dishevelled (Dvl) is a central node of Wnt signaling. Insulin receptor substrates (IRSs), as a critical component of insulin signaling, are involved in cell proliferation, metabolism, and cancer development. In this study, we report that IRS1/2 promotes Wnt/β-catenin signaling by stabilizing Dvl2. We found that IRS1/2 interacts with Dvl2. Overexpression of IRS1/2 increased the protein level of Dvl2 and promoted canonical Wnt signaling, as evidenced by the increased T cell-specific factor 4 transcriptional activity and the up-regulation of expression of CYCLIN D1 and c-MYC, two Wnt target genes critical for cell growth, whereas depletion of IRS1/2 reduced the level of Dvl2 and attenuated Wnt/β-catenin signaling. Biochemical analyses revealed that IRS1/2 decreased Lys-63-linked ubiquitination of Dvl2 and stabilized Dvl2 protein via suppressing its autophagy-mediated degradation. We further revealed that IRS1/2 blocks autophagy-induced formation of the Dvl2-p62/SQSTM1 complex, resulting in disabled association of Dvl2 to autophagosomes. We demonstrated that IRS1/2 promoted the induction of epithelial-mesenchymal transition (EMT) and cell proliferation in response to Wnt stimulation, whereas depletion of Dvl2 impaired the IRS1/2-mediated EMT and cell growth. Our findings revealed that IRS1/2 promotes EMT and cell proliferation through stabilizing Dvl2.

Related Organizations
Keywords

Epithelial-Mesenchymal Transition, Protein Stability, Dishevelled Proteins, Ubiquitination, Phosphoproteins, Proto-Oncogene Proteins c-myc, Wnt Proteins, HEK293 Cells, Multiprotein Complexes, Sequestosome-1 Protein, Autophagy, Insulin Receptor Substrate Proteins, Humans, Cyclin D1, Transcription Factor 7-Like 2 Protein, Wnt Signaling Pathway, beta Catenin, Adaptor Proteins, Signal Transducing, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research