Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Fgf8b-containing spliceforms, but not Fgf8a, are essential for Fgf8 function during development of the midbrain and cerebellum

Authors: Guo, Qiuxia; Li, Kairong; Sunmonu, N. Abimbola; Li, James Y.H.;

Fgf8b-containing spliceforms, but not Fgf8a, are essential for Fgf8 function during development of the midbrain and cerebellum

Abstract

The single Fgf8 gene in mice produces eight protein isoforms (Fgf8a-h) with different N-termini by alternative splicing. Gain-of-function studies have demonstrated that Fgf8a and Fgf8b have distinct activities in the developing midbrain and hindbrain (MHB) due to their different binding affinities with FGF receptors. Here we have performed loss-of-function analyses to determine the in vivo requirement for these two Fgf8 spliceforms during MHB development. We showed that deletion of Fgf8b-containing spliceforms (b, d, f and h) leads to loss of multiple key regulatory genes, including Fgf8 itself, in the MHB region. Therefore, specific inactivation of Fgf8b-containing spliceforms, similar to the loss of Fgf8, in MHB progenitors results in deletion of the midbrain, isthmus, and cerebellum. We also created a splice-site mutation abolishing Fgf8a-containing spliceforms (a, c, e, and g). Mice lacking Fgf8a-containing spliceforms exhibit growth retardation and postnatal lethality, and the phenotype is variable in different genetic backgrounds, suggesting that the Fgf8a-containing spliceforms may play a role in modulating the activity of Fgf8. Surprisingly, no discernable defect was detected in the midbrain and cerebellum of Fgf8a-deficient mice. To determine if Fgf17, which is expressed in the MHB region and possesses similar activities to Fgf8a based on gain-of-function studies, may compensate for the loss of Fgf8a, we generated Fgf17 and Fgf8a double mutant mice. Mice lacking both Fgf8a-containing spliceforms and Fgf17 display the same defect in the posterior midbrain and anterior cerebellum as Fgf17 mutant mice. Therefore, Fgf8b-containing spliceforms, but not Fgf8a, are essential for the function of Fgf8 during the development of the midbrain and cerebellum.

Related Organizations
Keywords

Mice, Knockout, Fibroblast Growth Factor 8, Cell Biology, Signaling, Fgf8, Midbrain, Fibroblast Growth Factors, Alternative Splicing, Mice, Mesencephalon, Cerebellum, Mutation, Animals, Organizer, Molecular Biology, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Average
Top 10%
hybrid