Powered by OpenAIRE graph

The Mouse Alanine:Glyoxylate Aminotransferase Gene (Agxt1): Cloning, Expression, and Mapping to Chromosome 1

Authors: X M, Li; E C, Salido; L J, Shapiro;

The Mouse Alanine:Glyoxylate Aminotransferase Gene (Agxt1): Cloning, Expression, and Mapping to Chromosome 1

Abstract

The human alanine:glyoxylate aminotransferase gene (AGXT) has been cloned and characterized in detail, and various mutant alleles have been shown to be responsible for primary hyperoxaluria type 1 (PH1). However, advances in understanding the basic mechanisms of this rare human disease have been hampered by the lack of a suitable animal model. Although several AGXT homologous genes have been cloned in a number of mammalian species, none of them allows the level of genetic experimentation that current methods provide for mouse embryo manipulation. Thus, we have carried out the molecular cloning and analysis of the mouse Agxt1 gene, as a necessary first step towards the generation of a mouse model for PH1. The full-length mouse Agxt1 cDNA is 1545 bp long, and encodes a 414 amino acid protein. Mouse Agxt1 is highly similar to its rat counterpart both at the nucleotide (91% identity) and the amino acid (92% identity) levels. Like its rat homologue, the larger mRNA species transcribed encodes a conserved amino terminal end characteristic of AGXT forms known to be targeted to the mitochondria. Mouse Agxt1 expression is restricted to the liver, and in vitro transfection of AGXT(-) cells with the cloned Agxt1 cDNA confers AGXT enzymatic activity. At the genomic level, mouse Agxt1 contains 11 exons, spanning 11 Kb, and it maps to the central portion of chromosome 1, a region of known synteny with human distal 2q, where AGXT has been previously mapped (2q36-37).

Related Organizations
Keywords

Hyperoxaluria, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Chromosome Mapping, Gene Expression, Protein Sorting Signals, Mitochondria, Mice, Protein Transport, Species Specificity, Chromosomes, Human, Pair 2, Animals, Humans, Tissue Distribution, Amino Acid Sequence, Cloning, Molecular, Transaminases, Gene Library

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Top 10%
Average