Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Omegaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Omega
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY NC ND
Data sources: PubMed Central
versions View all 3 versions

Network Pharmacology Experiments Show That Emodin Can Exert a Protective Effect on MCAO Rats by Regulating Hif-1α/VEGF-A Signaling

Authors: Baojiang Lv; Kenan Zheng; Yifan Sun; Lulu Wu; Lijun Qiao; Zhibing Wu; Yuanqi Zhao; +1 Authors

Network Pharmacology Experiments Show That Emodin Can Exert a Protective Effect on MCAO Rats by Regulating Hif-1α/VEGF-A Signaling

Abstract

Modern pharmacological studies have shown that emodin, the main effective component of rhubarb, has good anti-inflammatory and antioxidant effects, but its pharmacodynamic mechanism remains unclear yet. This study aims to elucidate the multitarget action mechanism of emodin in ischemic stroke through network pharmacology and in vivo experiments. Sprague-Dawley rats were randomly divided into control (normal saline), sham (normal saline), model (normal saline), and emodin groups (n = 9 per group). Emodin was administered at 40 mg/kg/d for 3 consecutive days. The rats were subjected to middle cerebral artery occlusion for 2 h, followed by reperfusion for 24 h to establish the cerebral ischemia-reperfusion injury. To search for relevant studies in databases, emodin, ischemic stroke, and stroke were used as keywords. Subsequently, protein-protein interaction networks and complex disease target networks were established, and an enrichment analysis and molecular docking of core targets were performed. Gene expression was detected through western blotting and reverse-transcription polymerase chain reaction. Localization and expression of proteins were detected through immunohistochemistry. Furthermore, the neurological function, 2,3,5-triphenyltetrazolium chloride staining, levels of brain tissue inflammatory factors, the role of the blood-brain barrier (BBB), and relevant signaling pathways were assessed in vivo. The molecular docking of core targets revealed that the docking between vascular endothelial growth factor A (VEGF-A) and emodin was the most efficient. Emodin pretreatment decreased the neurological score from 2.875 to 1.125. Moreover, emodin inhibited the degradation of occludin and claudin-5 caused by matrix metalloprotein kinase (MMP)-2/MMP-9, thereby protecting the BBB. Additionally, related proteins such as hypoxia-inducible factor-1α/VEGF-A and nuclear factor kappa B were down-regulated. Thus, emodin may play a protective role during cerebral ischemia reperfusion through mediation of the Hif-1α/VEGF-A signaling pathway to inhibit the expression of inflammatory factors.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green
gold