Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oncogene
Article . 2004
versions View all 2 versions

Regulation of phosphoglucomutase 1 phosphorylation and activity by a signaling kinase

Authors: Ratna K. Vadlamudi; Christopher J. Barnes; Rakesh Kumar; Anupama E. Gururaj;

Regulation of phosphoglucomutase 1 phosphorylation and activity by a signaling kinase

Abstract

We have identified a novel mechanism of cross-talk between cell signaling and metabolic pathways, whereby the signaling kinase p21-activated kinase 1 (Pak1) binds to, phosphorylates and enhances the enzymatic activity of phosphoglucomutase 1 (PGM), an important regulatory enzyme in cellular glucose utilization and energy homeostasis. Pak1 and PGM were colocalized in model cell systems and showed functional interactions in a physiological setting. Strong direct interaction of PGM with Pak1 but not Pak2, Pak3, or Pak4 was observed. PGM binding was within 75-149 amino acids (aa) of Pak1, while Pak1 binding to PGM was in the N-terminal 96 aa. Pak1-mediated phosphorylation of PGM selectively on threonine 466 significantly increased PGM enzymatic activity and could be blocked by transfection with a dominant-negative Pak1 expression vector and by Pak1-specific small inhibitory RNA. Stable transfection of PGM into PGM-deficient K562 leukemia cells further demonstrated the role of Pak1 in regulating PGM activity. The results presented here provide new evidence that the cell signaling kinase Pak1 is a novel regulator of glucose metabolism through its phosphorylation and regulation of PGM activity. These findings suggest a new mechanism whereby growth factor signaling may coordinately integrate metabolic regulation with established signaling functions of cell cycle regulation and cell growth.

Keywords

Binding Sites, Protein Conformation, Molecular Sequence Data, Protein Serine-Threonine Kinases, Phosphoproteins, Phosphoglucomutase, p21-Activated Kinases, Cell Line, Tumor, Doxycycline, Humans, Amino Acid Sequence, Phosphorylation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    102
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
102
Top 10%
Top 10%
Top 10%
bronze