Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arthritis & Rheumati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radboud Repository
Article . 2005
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Arthritis & Rheumatism
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions

Induction of cartilage damage by overexpression of T cell interleukin‐17A in experimental arthritis in mice deficient in interleukin‐1

Authors: Koenders, M.I.; Lubberts, E.; Oppers-Walgreen, B.; Bersselaar, L.A.M. van den; Helsen, M.M.A.; Kolls, J.; Joosten, L.A.B.; +1 Authors

Induction of cartilage damage by overexpression of T cell interleukin‐17A in experimental arthritis in mice deficient in interleukin‐1

Abstract

AbstractObjectiveTo examine the capacity of T cell interleukin‐17A (IL‐17A; referred to hereinafter as IL‐17) to induce cartilage damage during experimental arthritis in the absence of IL‐1.MethodsLocal IL‐17 gene transfer was performed in the knee joint of IL‐1–deficient mice and wild‐type controls during streptococcal cell wall (SCW)–induced arthritis. Knee joints were isolated at various time points for histologic analysis of cartilage proteoglycan (PG) depletion. Expression of messenger RNA for inducible nitric oxide synthase, matrix metalloproteinases (MMPs) 3, 9, and 13, and ADAMTS‐4 was determined by quantitative polymerase chain reaction analysis. VDIPEN staining was analyzed to study MMP‐mediated cartilage damage. In addition, systemic anti–IL‐1α/β antibody treatment was performed in mice immunized with type II collagen and injected locally with an adenoviral vector expressing IL‐17 or with control adenovirus. Knee joints were isolated and analyzed for cartilage PG depletion, chondrocyte death, and cartilage surface erosion.ResultsDuring SCW‐induced arthritis, local T cell IL‐17 gene transfer turned this acute, macrophage‐driven joint inflammation into a severe, chronic arthritis accompanied by aggravated cartilage damage. Of high interest, the IL‐1 dependency of cartilage PG depletion was fully abrogated when IL‐17 was locally overexpressed in the joint. Moreover, local IL‐17 gene transfer increased MMP expression without the need for IL‐1, although IL‐1 remained essential for part of the cartilage VDIPEN expression. Furthermore, when IL‐17 was overexpressed in the knee joints of mice with collagen‐induced arthritis, anti–IL‐1 treatment did not reduce the degree of chondrocyte death or cartilage surface erosion.ConclusionThese data show the capacity of IL‐17 to replace the catabolic function of IL‐1 in cartilage damage during experimental arthritis.

Keywords

Cartilage, Articular, Male, DCN 1: Perception and Action, UMCN 4.2: Chronic inflammation and autoimmunity, NCMLS 1: Infection and autoimmunity, Knee Joint, T-Lymphocytes, Interleukin-17, N4i 1: Pathogenesis and modulation of inflammation, Arthritis, Experimental, Mice, N4i 4: Auto-immunity, transplantation and immunotherapy, Models, Animal, Animals, Cartilage Diseases, Interleukin-1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 10%
Top 10%
Top 10%
Green
bronze