Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Naturearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2009
versions View all 3 versions

A role for Lin28 in primordial germ-cell development and germ-cell malignancy

Authors: In-Hyun Park; Akiko Yabuuchi; M. Azim Surani; Antonio R. Perez-Atayde; Srinivas R. Viswanathan; George Q. Daley; George Q. Daley; +6 Authors

A role for Lin28 in primordial germ-cell development and germ-cell malignancy

Abstract

The rarity and inaccessibility of the earliest primordial germ cells (PGCs) in the mouse embryo thwart efforts to investigate molecular mechanisms of germ-cell specification. stella (also called Dppa3) marks the rare founder population of the germ lineage. Here we differentiate mouse embryonic stem cells carrying a stella transgenic reporter into putative PGCs in vitro. The Stella(+) cells possess a transcriptional profile similar to embryo-derived PGCs, and like their counterparts in vivo, lose imprints in a time-dependent manner. Using inhibitory RNAs to screen candidate genes for effects on the development of Stella(+) cells in vitro, we discovered that Lin28, a negative regulator of let-7 microRNA processing, is essential for proper PGC development. Furthermore, we show that Blimp1 (also called Prdm1), a let-7 target and a master regulator of PGC specification, can rescue the effect of Lin28 deficiency during PGC development, thereby establishing a mechanism of action for Lin28 during PGC specification. Overexpression of Lin28 promotes formation of Stella(+) cells in vitro and PGCs in chimaeric embryos, and is associated with human germ-cell tumours. The differentiation of putative PGCs from embryonic stem cells in vitro recapitulates the early stages of gamete development in vivo, and provides an accessible system for discovering novel genes involved in germ-cell development and malignancy.

Keywords

Chromosomal Proteins, Non-Histone, RNA-Binding Proteins, Cell Differentiation, Neoplasms, Germ Cell and Embryonal, Article, Cell Line, Gene Expression Regulation, Neoplastic, Mice, Inbred C57BL, Repressor Proteins, Mice, Germ Cells, Animals, Humans, Female, Positive Regulatory Domain I-Binding Factor 1, Transgenes, Embryonic Stem Cells, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    344
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
344
Top 1%
Top 1%
Top 1%
Green
hybrid