Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Toxicology in Vitroarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Toxicology in Vitro
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Rifampicin attenuates rotenone-treated microglia inflammation via improving lysosomal function

Authors: Yanran, Liang; Dezhi, Zheng; Sudan, Peng; Danyu, Lin; Xiuna, Jing; Zhifen, Zeng; Ying, Chen; +4 Authors

Rifampicin attenuates rotenone-treated microglia inflammation via improving lysosomal function

Abstract

Mounting evidence suggests that lysosome dysfunction promotes the progression of several neurodegenerative diseases via hampering autophagy flux. While regulation of autophagy in microglia may affect chronic inflammation involved in Parkinson's disease (PD). Our previous studies have reported rifampicin inhibits rotenone-induced microglia inflammation by enhancing autophagy, however the precise mechanism remains unclear. Human microglia (HM) cells were pretreated with 100 μM rifampicin for 2 h followed by exposure to 0.1 μM rotenone. We found that rifampicin pretreatment suppressed the gene expression of IL-1β and IL-6 via inhibiting activation of JNK after rotenone induction, but the anti-inflammatory effect of rifampicin was reversed by chloroquine. Moreover, rifampicin pretreatment not only improved the ratio of LC3-II/LC3-I in rotenone-treated cells, but also increased autolysosomes and decreased autophagosomes in RFP-GFP-LC3B transfected HM cells exposed to rotenone, thus indicating rifampicin improves autophagy flux in rotenone-treated HM cells. Finally, we verified rifampicin pretreatment enhanced ATP6V0A1 expression when compared to that exposed to rotenone alone. ATP6V0A1 knockdown inhibited the effect of rifampicin on maintaining lysosome acidification and autophagosome-lysosome fusion in rotenone-treated microglia. Taken together, our results indicated that rifampicin attenuates rotenone-induced microglia inflammation partially via elevating ATP6V0A1. Modulation of lysosomal function by rifampicin may be a novel therapeutic strategy for PD.

Related Organizations
Keywords

Insecticides, Vacuolar Proton-Translocating ATPases, Cell Survival, Autophagosomes, Neuroprotective Agents, Rotenone, Humans, Microglia, RNA, Small Interfering, Rifampin, Lysosomes, Microtubule-Associated Proteins, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%