Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Esrrb Activates Oct4 Transcription and Sustains Self-renewal and Pluripotency in Embryonic Stem Cells

Authors: Xiaofei, Zhang; Juan, Zhang; Tao, Wang; Miguel A, Esteban; Duanqing, Pei;

Esrrb Activates Oct4 Transcription and Sustains Self-renewal and Pluripotency in Embryonic Stem Cells

Abstract

The genetic program of embryonic stem (ES) cells is orchestrated by a core of transcription factors that has OCT4, SOX2, and NANOG as master regulators. Protein levels of these core factors are tightly controlled by autoregulatory and feed-forward transcriptional mechanisms in order to prevent early differentiation. Recent studies have shown that knockdown of Esrrb (estrogen-related-receptor beta), a member of the nuclear orphan receptor family, induces differentiation of mouse ES cells cultured in the presence of leukemia inhibitory factor. It was however not known how knocking down Esrrb exerts this effect. Herein we have identified two ESRRB binding sites in the proximal 5'-untranslated region of the mouse Oct4 gene, one of which is in close proximity to a NANOG binding site. Both ESRRB and NANOG are necessary for maintaining the activity of this promoter in ES cell lines. We have also demonstrated that the two transcription factors interact through their DNA binding domains. This interaction reciprocally modulates their transcriptional activities and may be important to fine-tune ES cell pluripotency. Supporting all of these data, stable transfection of Esrrb in ES cell lines proved sufficient to sustain their characteristics in the absence of leukemia-inhibitory factor. In summary, our experiments help to understand how Esrrb coordinates with Nanog and Oct4 to activate the internal machinery of ES cells.

Related Organizations
Keywords

Homeodomain Proteins, Pluripotent Stem Cells, Transcription, Genetic, SOXB1 Transcription Factors, Cell Differentiation, Nanog Homeobox Protein, Response Elements, Transfection, Cell Line, Mice, Receptors, Estrogen, Animals, Humans, Octamer Transcription Factor-3, Embryonic Stem Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    130
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
130
Top 10%
Top 10%
Top 1%
gold