Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Intragenic deletion of Tgif causes defectsin brain development

Authors: Chenzhong, Kuang; Yan, Xiao; Ling, Yang; Qian, Chen; Zhenzhen, Wang; Simon J, Conway; Yan, Chen;

Intragenic deletion of Tgif causes defectsin brain development

Abstract

TG-interacting factor (TGIF) is a homeodomain-containing protein and functions as a transcriptional repressor within the TGF-beta and retinoic acid signaling pathways. Heterozygous mutations of TGIF have been found in patients with holoprosencephaly (HPE), which is the most common congenital brain malformation in humans. However, targeted null deletions of the entire Tgif gene in mice surprisingly revealed no apparent brain defects. We report here that deletion of the third exon of Tgif gene resulted in a defined spectrum of brain developmental defects including exencephaly, microcephaly, HPE, and abnormalities in embryonic brain ventricle formation and cleavage. These defects could be detected in mice both heterozygous and homozygous for the targeted Tgif deletion. Moreover, expression of dorsal-ventral patterning genes including Shh, Pax6 and Nkx2.2 was altered. The ventricular neuroepithelium exhibited focalized increase of cell proliferation rate and resultant tissue expansion. The incidence of brain abnormalities within the mutant mice was dependent on its genetic background, suggesting that additional genetic modifiers functionally interact with Tgif during embryonic brain development. The intragenic Tgif deletion mouse, therefore, would serve as a useful model that can be used to unravel the genetic complexity implicated in the pathogenesis of HPE.

Related Organizations
Keywords

Homeodomain Proteins, Male, Mice, Knockout, Genotype, Blotting, Western, Neuroepithelial Cells, Brain, Gene Expression Regulation, Developmental, Nuclear Proteins, Mice, Inbred Strains, Exons, Mice, Inbred C57BL, Mice, Homeobox Protein Nkx-2.2, Phenotype, Animals, Female, Hedgehog Proteins, Gene Deletion, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
bronze