Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 5 versions

Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation

Authors: Barcroft, L.C.; Offenberg, H.; Thomsen, P.; Watson, A.J.;

Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation

Abstract

Mammalian blastocyst formation is dependent on establishment of trophectoderm (TE) ion and fluid transport mechanisms. We have examined the expression and function of aquaporin (AQP) water channels during murine preimplantation development. AQP 3, 8, and 9 proteins demonstrated cell margin-associated staining starting at the 8-cell (AQP 9) or compacted morula (AQP 3 and 8) stages. In blastocysts, AQP 3 and 8 were detected in the basolateral membrane domains of the trophectoderm, while AQP3 was also observed in cell margins of all inner cell mass (ICM) cells. In contrast, AQP 9 was predominantly observed within the apical membrane domains of the TE. Murine blastocysts exposed to hyperosmotic culture media (1800 mOsm; 10% glycerol) demonstrated a rapid volume decrease followed by recovery to approximately 80% of initial volume over 5 min. Treatment of blastocysts with p-chloromercuriphenylsulfonic acid (pCMPS, > or =100 microM) for 5 min significantly impaired (P < 0.05) volume recovery, indicating the involvement of AQPs in fluid transport across the TE. Blastocysts exposure to an 1800-mOsm sucrose/KSOMaa solution did not demonstrate volume recovery as observed following treatment with glycerol containing medium, indicating glycerol permeability via AQPs 3 and 9. These findings support the hypothesis that aquaporins mediate trans-trophectodermal water movements during cavitation.

Keywords

570, Aquaporin 3, Obstetrics and Gynecology, Fluorescent Antibody Technique, Water, Cell Biology, Mercury, Aquaporins, Ion Channels, Trophoblasts, Mice, Blastocyst, Animals, Enzyme Inhibitors, Molecular Biology, 4-Chloromercuribenzenesulfonate, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    128
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
128
Top 10%
Top 10%
Top 10%
Green
hybrid