Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 1998 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
Genetics
Article . 1998
versions View all 2 versions

The Involvement of Cellular Recombination and Repair Genes in RNA-Mediated Recombination in Saccharomyces cerevisiae

Authors: Leslie Derr;

The Involvement of Cellular Recombination and Repair Genes in RNA-Mediated Recombination in Saccharomyces cerevisiae

Abstract

Abstract We previously demonstrated that a reverse transcript of a cellular reporter gene (his3-AI) can serve as the donor for gene conversion of a chromosomal his3-ΔMscI target sequence, and that this process requires the yeast recombination gene RAD52. In this study, we examine the involvement of other recombination and repair genes in RNA-mediated recombination, and gain insight into the nature of the recombination intermediate. We find that mutation of the mitotic RecA homologs RAD51, RAD55, and RAD57 increases the rate of RNA-mediated recombination relative to the wild type, and that these gene functions are not required for RNA-mediated gene conversion. Interestingly, RAD1 is required for RNA-mediated gene conversion of chromosomal his3-ΔMscI sequences, suggesting that the cDNA intermediate has a region of nonhomology that must be removed during recombination with target sequences. The observation that both RAD1 and RAD52 are required for RNA-mediated gene conversion of chromosomal but not plasmid sequences indicates a clear difference between these two pathways of homologous RNA-mediated recombination.

Keywords

Recombination, Genetic, Saccharomyces cerevisiae Proteins, DNA Repair, Genes, Fungal, RNA, Fungal, Saccharomyces cerevisiae, Endonucleases, Rad52 DNA Repair and Recombination Protein, DNA-Binding Proteins, Fungal Proteins, DNA Repair Enzymes, Hydro-Lyases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Average
hybrid