Regulation of GluA1 α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Function by Protein Kinase C at Serine-818 and Threonine-840
Regulation of GluA1 α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Function by Protein Kinase C at Serine-818 and Threonine-840
Three residues within the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor subunit GluA1 C terminus (Ser818, Ser831, Thr840) can be phosphorylated by Ca(2+)/phospholipid-dependent protein kinase (PKC). Here, we show that PKC phosphorylation of GluA1 Ser818 or Thr840 enhances the weighted mean channel conductance without altering the response time course or agonist potency. These data support the idea that these residues constitute a hyper-regulatory domain for the AMPA receptor. Introduction of phosphomimetic mutations increases conductance only at these three sites within the proximal C terminus, consistent with a structural model with a flexible linker connecting the distal C-terminal domain to the more proximal domain containing a helix bracketed by Ser831 and Thr840. NMR spectra support this model and raise the possibility that phosphorylation can alter the configuration of this domain. Our findings provide insight into the structure and function of the C-terminal domain of GluA1, which controls AMPA receptor function and trafficking during synaptic plasticity in the central nervous system.
- Johns Hopkins University United States
- Emory University United States
- Cornell University United States
- Johns Hopkins Medicine United States
Male, Models, Molecular, Neurons, Threonine, Patch-Clamp Techniques, Protein Conformation, Primary Cell Culture, Hippocampus, Rats, Mice, HEK293 Cells, Mutation, Serine, Animals, Humans, Female, Receptors, AMPA, Phosphorylation, Protein Kinase C
Male, Models, Molecular, Neurons, Threonine, Patch-Clamp Techniques, Protein Conformation, Primary Cell Culture, Hippocampus, Rats, Mice, HEK293 Cells, Mutation, Serine, Animals, Humans, Female, Receptors, AMPA, Phosphorylation, Protein Kinase C
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
