Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brain Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brain Sciences
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brain Sciences
Article . 2022
Data sources: DOAJ
versions View all 5 versions

Flavonoid Derivatives as Potential Cholinesterase Inhibitors in Scopolamine-Induced Amnesic Mice: An In Vitro, In Vivo and Integrated Computational Approach

Authors: Fakhria A. Al-Joufi; Syed Wadood Ali Shah; Mohammad Shoaib; Mehreen Ghias; null Shafiullah; Atif Ali Khan Khalil; Syed Babar Jamal; +2 Authors

Flavonoid Derivatives as Potential Cholinesterase Inhibitors in Scopolamine-Induced Amnesic Mice: An In Vitro, In Vivo and Integrated Computational Approach

Abstract

Flavonoids are one of the most exciting types of phenolic compounds with a wide range of bioactive benefits. A series of flavone derivatives (F1–F5) were previously synthesized from substituted O-hydroxy acetophenone and substituted chloro-benzaldehydes. The titled compounds F1–F5 in the present study were evaluated for their anticholinesterase potential (against AChE and BuChE). The obtained results were then validated through a molecular docking approach. Compound F5 was found to be the most potent inhibitor of AChE (IC50 = 98.42 ± 0.97 µg/mL) followed by compound F4, whereas compound F2 was found to be the most promising inhibitor of BuChE (IC50 = 105.20 ± 1.43 µg/mL) among the tested compounds. The molecular docking analysis revealed a similar trend in the binding affinity of compounds with the targeted enzymes and found them to be capable of forming highly stable complexes with both receptors. The selected compounds were further subjected to in vivo assessment of cognitive function in a scopolamine-induced amnesic animal model, in which almost all compounds F1–F5 significantly attenuated the amnesic effects as evaluated through Y-Maze Paradigm and novel object discrimination (NOD) tasks, findings that were further supported by ex vivo experimental results. Among (F1–F5), F5 showed significant anti-amnesic effects in scopolamine-induced amnesic models and ameliorated the memory loss in behavioral model studies as compared to counterparts. In ex vivo study, noteworthy protection from oxidative stress in the brains of scopolamine-induced amnesic mice was also recorded for F5. These findings also confirmed that there were no significant differences among the in vivo and ex vivo results after administration of F1–F5 (7.5 or 15 mg/kg) or donepezil (2 mg/kg). These synthesized flavonoids could serve as potential candidates for new neuroprotective and nootropic drugs. However, further studies are needed to validate their observed potential in other animal models as well.

Keywords

Neurosciences. Biological psychiatry. Neuropsychiatry, Article, flavones, nootropic agents, docking, AChE, flavones; enzyme inhibition; docking; Alzheimer’s disease; AChE; nootropic agents, enzyme inhibition, Alzheimer’s disease, RC321-571

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold