Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuromuscular Disord...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuromuscular Disorders
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

A study of FHL1, BAG3, MATR3, PTRF and TCAP in Australian muscular dystrophy patients

Authors: Jenny Tran; Monkol Lek; Leigh B. Waddell; Ying Hu; Frances J. Evesson; Xi F. Zheng; Kathryn N. North; +5 Authors

A study of FHL1, BAG3, MATR3, PTRF and TCAP in Australian muscular dystrophy patients

Abstract

FHL1, BAG3, MATR3 and PTRF are recently identified myopathy genes associated with phenotypes that overlap muscular dystrophy. TCAP is a rare reported cause of muscular dystrophy not routinely screened in most centres. We hypothesised that these genes may account for patients with undiagnosed forms of muscular dystrophy in Australia. We screened a large cohort of muscular dystrophy patients for abnormalities in FHL1 (n=102) and TCAP (n=100) and selected patients whose clinical features overlapped the phenotypes previously described for BAG3 (n=9), MATR3 (n=15) and PTRF (n=7). We found one FHL1 mutation (c.311G>A, p.C104Y) in a boy with rapidly progressive muscle weakness and reducing body myopathy who was initially diagnosed with muscular dystrophy. We identified no pathogenic mutations in BAG3, MATR3, PTRF or TCAP. In conclusion, we have excluded these five genes as common causes of muscular dystrophy in Australia. Patients with reducing body myopathy may be initially diagnosed as muscular dystrophy.

Keywords

Male, DNA Mutational Analysis, Australia, Intracellular Signaling Peptides and Proteins, Muscle Proteins, RNA-Binding Proteins, LIM Domain Proteins, Muscular Dystrophies, Cohort Studies, Phenotype, Nuclear Matrix-Associated Proteins, Mutation, Humans, Connectin, Female, Apoptosis Regulatory Proteins, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Average
bronze